精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinxcos2x,下列结论正确的是(
A.y=f(x)的图象关于 对称
B.y=f(x)的图象关于 对称
C.y=f(x)的图象关于y轴对称
D.y=f(x)不是周期函数

【答案】A
【解析】解:对于函数f(x)=sinxcos2x,
∵f(π﹣x)=sin(π﹣x)cos2(π﹣x)=sinxcos2x=f(x),
∴f(x)关于直线x= 对称,故A正确,B不正确.
根据f(﹣x)=﹣sinxcos2x=﹣f(x),故函数为奇函数,它的图象关于x轴对称,故排除C.
∵f(x+2π)=sin(2π+x)cos2(2π+x)=sinxcos2x=f(x),
∴2π是函数y=f(x)的周期,故D错误.
故选:A.
【考点精析】根据题目的已知条件,利用正弦函数的对称性的相关知识可以得到问题的答案,需要掌握正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解不等式x2﹣(a+ )x+1<0(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐馆一天中要购买A,B两种蔬菜每斤的价格分别为2元和3元,根据需要,A种蔬菜至少要买6斤,B种蔬菜至少要买4斤,而且一天中购买这两种蔬菜的总费用不能超过60元.

(1)写出一天中A种蔬菜购买的数量x和B种蔬菜购买的数量y之间的不等式组;
(2)在下面给定的坐标系中画出(1)中不等式组表示的平面区域(用阴影表示),并求出它的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算法流程图如图所示,则输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分别为AB,A1C1 , BC的中点.
求证:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣2,0),N(2,0),动点P满足条件 .记动点P的轨迹为W.
(1)求W的方程;
(2)若A,B是W上的不同两点,O是坐标原点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=1,且nan+1=(n+2)Sn , n∈N*
(1)求证:数列 为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案