精英家教网 > 高中数学 > 题目详情
13.U={x|x=2k,k∈N*且k≤10},A∩(∁UB)={2,4,16,18},(∁UA)∩B={12,14},(∁UA)∩(∁UB)=∅.求集合A和集合B.

分析 由U={x|x=2k,k∈N*且k≤10},确定出U,根据A与B补集,以及B与A补集,即可求出A,B的元素,再根据补集A与补集B的交集是空集,即可确定出A与B.

解答 解:由U={x|x=2k,k∈N*且k≤10},
得U={2,4,6,8,10,12,14,16,18,20},
∵A∩(∁UB)={2,4,16,18},(∁UA)∩B={12,14},
∴2,4,16,18∈A,2,4,16,18∉B;12,14∈B,12,14∉A,
又(∁UA)∩(∁UB)=∅,
则A={2,4,6,8,10,16,18,20},B={6,8,10,12,14,20}.

点评 本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若1是方程x3+kx2+3x-4=0的一个根,则式子x3+kx2+3x-4的因式分解为x3+kx2+3x-4=(x-1)(x2+x+4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求使不等式a${\;}^{{x}^{2}-2x+1}$>a${\;}^{{x}^{2}-3x+5}$(a>0,且a≠1)成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{{x}^{2}-(a+b)x+ab}$的定义域为M,函数g(x)=$\sqrt{x-a}$+$\sqrt{x-b}$的定义域为N(a>b>0),则下列关系式成立的是(  )
A.M?NB.M?NC.M∩N=∅D.M=N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M={x,xy,$\sqrt{x-y}$},N={0,|x|,y},若M⊆N,且N⊆M,则($\frac{1}{x}$+$\frac{1}{y}$)+($\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$)+…+($\frac{1}{{x}^{2010}}$+$\frac{1}{{y}^{2010}}$)+($\frac{1}{{x}^{2011}}$+$\frac{1}{{y}^{2011}}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a>0,“x∈{-a,a}”是“|x|=a”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.方程x2+2x+m=0(m∈R)有两根分别是α和β,求|α|+|β|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=log2(3-x)+$\sqrt{-{x}^{2}+2x}$的定义域为集合M.
(1)求M;
(2)若函数g(x)=-x2+2mx+1-m在M上存在最大值3,求实数m的值.

查看答案和解析>>

同步练习册答案