【题目】已知函数.
(1)求函数在上的单调递增区间;
(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.
【答案】(1)单调递增区间为;(2)见解析.
【解析】
(1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数在上的单调递增区间,与定义域取交集可得出答案;
(2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.
(1).
令,解得,
所以,函数在上的单调递增区间为,
,因此,函数在上的单调递增区间为;
(2)将函数的图象向左平移个单位长度,得到函数的图象,
再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,
由,
对于中的任意一个,区间长度始终为,大于,
每个区间至少含有一个整数,
因此,存在无穷多个互不相同的整数,使得.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点,倾斜角为的直线l与曲线C相交于M,N两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若动点到定点与定直线的距离之和为.
(1)求点的轨迹方程,并在答题卡所示位置画出方程的曲线草图;
(2)(理)记(1)得到的轨迹为曲线,问曲线上关于点对称的不同点有几对?请说明理由.
(3)(文)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人上午7时乘船出发,以匀速海里/小时 从港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为、小时,如果所需要的经费 (单位:元)
(1)试用含有、的代数式表示;
(2)要使得所需经费最少,求和的值,并求出此时的费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列,对任意都有,(其中k、b、p是常数).
(1)当,,时,求;
(2)当,,时,若,,求数列的通项公式;
(3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当,,时,设是数列的前n项和,,试问:是否存在这样的“封闭数列”,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S-ABCD的底面为正方形,,AC与BD交于E,M,N分别为SD,SA的中点,.
(1)求证:平面平面SBD;
(2)求直线BD与平面CMN所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(选),每门科目满分均为分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取人.
(1)求的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 | |||
女生 | |||
总计 |
(3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择“物理”的人数为,求的分布列及期望.附:,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.
(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com