精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数上的单调递增区间;

2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.

【答案】1)单调递增区间为;(2)见解析.

【解析】

1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数上的单调递增区间,与定义域取交集可得出答案;

2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.

1.

,解得

所以,函数上的单调递增区间为

,因此,函数上的单调递增区间为

(2)将函数的图象向左平移个单位长度,得到函数的图象,

再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,

对于中的任意一个,区间长度始终为,大于

每个区间至少含有一个整数,

因此,存在无穷多个互不相同的整数,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点到定点与定直线的距离之和为

1)求点的轨迹方程,并在答题卡所示位置画出方程的曲线草图;

2)(理)记(1)得到的轨迹为曲线,问曲线上关于点对称的不同点有几对?请说明理由.

3)(文)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列,对任意都有,(其中kbp是常数).

1)当时,求

2)当时,若,求数列的通项公式;

3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是封闭数列.当时,设是数列的前n项和,,试问:是否存在这样的封闭数列,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥S-ABCD的底面为正方形,ACBD交于EMN分别为SDSA的中点,.

1)求证:平面平面SBD

2)求直线BD与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每门科目满分均为.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取.

1)求的值;

2)学校计划在高一上学期开设选修中的物理地理两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在物理地理这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择物理

选择地理

总计

男生

女生

总计

3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择物理的人数为,求的分布列及期望.附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线猫眼曲线”.

1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;

3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是棱的中点,分别是线段上的点,则与平面平行的直线有(

A.0B.1C.2D.无数条

查看答案和解析>>

同步练习册答案