精英家教网 > 高中数学 > 题目详情
19.如图,四边形ABCD是体积为8$\sqrt{3}$π的圆柱OQ的轴截面,点P在底面圆周上,BP=OA=2,G是DP的中点.
(1)求证:AG⊥平面DPB;
(2)求二面角P-AG-B的正弦值.

分析 (1)由四边形ABCD是体积为8$\sqrt{3}$π的圆柱OQ的轴截面,求出AD=2$\sqrt{3}$,推导出AG⊥DP,BP⊥AG,由此能证明AG⊥平面DPB.
(2)由AG⊥平面DPB,知∠PGB是二面角P-AG-B的平面角,由此能求出二面角P-AG-B的正弦值.

解答 证明:(1)∵四边形ABCD是体积为8$\sqrt{3}$π的圆柱OQ的轴截面,
∴由题意知$π×{2}^{2}×AD=8\sqrt{3}$,
解得AD=2$\sqrt{3}$,
在Rt△AOP中,BP=OA=2,AB=4,
由勾股定理得AP=2$\sqrt{3}$,
∴AD=AP,
又∵G是DP的中点,∴AG⊥DP,①
∵AB为圆O的直径,∴AP⊥BP,
由已知得DA⊥底面DAP,
∴BP⊥AG,②
∵BP∩DP=P,∴由①②知:AG⊥平面DPB.
解:(2)由(1)知AG⊥平面DPB,
∴AG⊥BG,AG⊥PG,
∴∠PGB是二面角P-AG-B的平面角,
PG=$\frac{1}{2}PD=\frac{1}{2}×\sqrt{2}AP=\sqrt{6}$,
BP=OP=2,∠BPG=90°,
∴BG=$\sqrt{P{G}^{2}+B{P}^{2}}$=$\sqrt{10}$,
cos$∠PGB=\frac{PG}{BG}=\frac{\sqrt{6}}{\sqrt{10}}$=$\frac{\sqrt{15}}{5}$,
sin∠PGB=$\sqrt{1-(\frac{\sqrt{15}}{5})^{2}}$=$\frac{\sqrt{10}}{5}$.
∴二面角P-AG-B的正弦值为$\frac{\sqrt{10}}{5}$.

点评 本题考查线面垂直的证明,考查二面角的正弦值的求法,考查推理论证能力、空间思维能力、运算求解能力,考查等价转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.直线3x+4y-2=0和直线6x+8y+1=0的距离是(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{3}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{10π}{3}$)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π),OP所经过的在正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论,其中正确的是(  )
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函数f(x)在($\frac{π}{2}$,π)上为减函数
③任意x∈[0,$\frac{π}{2}$],都有f(x)+f(π-x)=4.
A.B.C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在某商业促销的最后一场活动中,甲、乙、丙、丁、戊、己6名成员随机抽取4个礼品,每人最多抽一个礼品,且礼品中有两个完全相同的笔记本电脑,两个完全相同的山地车,则甲、乙两人都抽到礼品的情况有(  )
A.36种B.24种C.18种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U={1,2,3,4},集合A={x|x2-5x+4<0,x∈Z},则∁UA={1,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过椭圆$\frac{x^2}{m}+\frac{y^2}{m-4}=1$(m>4)右焦点F的圆与圆O:x2+y2=1外切,则该圆直径FQ的端点Q的轨迹是(  )
A.一条射线B.两条射线C.双曲线的一支D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=4$\sqrt{3}$x的准线与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)相交于A,B两点,双曲线的一条渐近线方程是y=$\sqrt{2}$x,点F是抛物线的焦点,且△FAB是正三角形,则双曲线的标准方程是${x^2}-\frac{y^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f'(x)是定义在(0,π)上的函数f(x)的导函数,有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

同步练习册答案