精英家教网 > 高中数学 > 题目详情

(14分)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.

(1)求实数k的取值范围;

(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

 

【答案】

(1)-2<k<-.(2) k=-

【解析】(1)直线与双曲线方程联立消y得关于x的一元二次方程,根据判别式大于零,可求出k的取值范围.

(2) 解本题的突破口是假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0),则由FA⊥FB得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0,

整理得:(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0再根据韦达定理解决即可.

(1)将直线l的方程y=kx+1代入双曲线方程2x2-y2=1后,整理得:

(k2-2)x2+2kx+2=0①

解:依题意,直线l与双曲线C的右支交于不同两点,故

,解得-2<k<-

(2)设A、B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②,

假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0),则由FA⊥FB得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0,

整理得:(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0③

把②式及c=代入③式化简得5k2+2k-6=0,解得

k=-或k=∉(-2,-)(舍去).

可得k=-使得以线段AB为直径的圆经过双曲线C的右焦点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是k1,k2,且k1•k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM•kBN=-
1
4
,求证:直线l过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大型企业2010年和2011年进行科技创新,企业有效转型,产品大规模升级,该企业2012年季度利润和季度能源成本分别为x、y,其值见表,x单位为千万元,y单位为十万元.下面四个结论:
季度 1 2 3 4
x 30 31 33 34
y 18 16 14 12
①点(x,y)构成的图形是散点图,这些点不在一条直线上;
②季度利润与季度能源成本正相关;
③若直线l:
?
y
=
?
b
x+
?
a
是季度能源成本与季度利润的回归直线,则直线l经过点(32,15);
④由表可知2013年春季的利润为3.55亿元,能源成本为100万元.
其中正确的是
 
(只填结论番号,多填少填错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中四模理)( 14分)

直线l:axy-1=0与曲线Cx2-2y2=1交于PQ两点,

(1)当实数a为何值时,|PQ|=2.

(2)是否存在a的值,使得以PQ为直径的圆经过原点?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案