精英家教网 > 高中数学 > 题目详情

已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为)的直线与椭圆相交于两点,直线分别交直线 于两点,线段的中点为.记直线的斜率为,求证: 为定值.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)根据条件可得以下方程组: ,解这个方程组求出的值便得椭圆的方程;(Ⅱ)将表示出来,这样就是一个只含的式子,将该式化简即可.那么如何用来表示
.因为A(2,0),所以直线的方程分别为:.
得:所以的中点为:
由此得直线的斜率为:

       ①

再设直线的方程为,代入椭圆方程得:
,则由韦达定理得:代入①式,便可将
表示出来,从而得到的值.
试题解析:(Ⅰ)由题设: ,解之得,所以椭圆的方程为  4分
(Ⅱ)设直线的方程为代入椭圆方程得:

,则由韦达定理得:
直线的方程分别为:
令,得:所以


              13分
考点:1、椭圆及其方程;2、直线的方程;3、中点坐标公式;4、根与系数的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.

(I)求椭圆C的方程;
(II)如图,动直线与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,四边形面积S的求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴直线与椭圆相交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于4,设点的轨迹为曲线C,直线过点且与曲线C交于A,B两点.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:,离心率为,焦点的直线交椭圆于两点,且的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ) 直线与y轴交于点P(0,m)(m0),与椭圆C交于相异两点A,B且.若,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案