精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-2|x-
1
2
|,0≤x≤1
log2013x,    x>1
,若方程f(x)=m有三个不等实根x1、x2、x3,则x1+x2+x3的取值范围是
(2,2014)
(2,2014)
分析:画出函数y=f(x)的图象,y=m,方程f(x)=m有三个不等实根x1、x2、x3,可知0<m<1.不妨设x1<x2<x3,利用对称性及图象可得x1+x2=2×
1
2
=1,x3>1,由0<m<1,可得log2013x<1,得到x3<2013,即可x1+x2+x3取值范围.
解答:解:f(x)=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤1
log2013x,x>1
,y=m画出图象,
∵方程f(x)=m有三个不等实根x1、x2、x3
不妨设x1<x2<x3,则x1+x2=2×
1
2
=1,x3>1,
则x1+x2+x3>2,
由0<m<1,∴log2013x<1,得到x3<2013,
∴x1+x2+x3<2014,
∴x1+x2+x3的取值范围是(2,2014).
故答案为(2,2014).
点评:本题考查了函数的图象和函数的对称性、单调性,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案