精英家教网 > 高中数学 > 题目详情
4.设函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,则f(f(10))的值为(  )
A.lg101B.1C.2D.0

分析 先求出f(10)=lg10=1,从而f(f(10))=f(1),由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,
∴f(10)=lg10=1,
f(f(10))=f(1)=1+1=2.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,A={x|-2<x<0},B={x|-1<x<3},求:
(1)A∪B
(2)A∩B
(3)(∁UA)∩(∁UB)
(4)(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f(x+6),(1≤x<10)}\end{array}\right.$则使f(x)=11成立的实数x的集合为{1,7,13}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=lg(-x2+4x+5),则该函数的单调递减区间为[2,5);该函数在定义域内的最大值为lg9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某学校有学生4 022人.为调查学生对2012年伦敦奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是134.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=\frac{{\sqrt{2x-1}}}{{{x^2}-1}}$的定义域为(  )
A.$[\frac{1}{2}\;\;,\;\;+∞)$B.(1,+∞)
C.$[\frac{1}{2}\;\;,\;\;1)∪({1\;\;,\;\;+∞})$D.$(-1\;\;,\;\;\frac{1}{2}]∪({1\;\;,\;\;+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.空间中四点可确定的平面有(  )
A.1个B.4个C.1个或4个D.0个或1个或4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义$\frac{n}{{{p_1}+{p_2}+{p_3}+…+{p_n}}}$为n个实数P1.P2.….Pn的“均倒数”.已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+a}$,前n项和Sn≥S5恒成立,则实数a的取值范围是(  )
A.(-18,-16)B.[-18,-16]C.(-22,-18)D.(-20,-18)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.各项均为正数的等比数列{an}满足a2=3,a4-2a3=9,
(1)求数列{an}的通项公式;
(2)设bn=(n+1)•log3an+1,数列$\left\{{\frac{1}{b_n}}\right\}$前n项和$T_n^{\;}$,在(1)的条件下,证明不等式Tn<1.

查看答案和解析>>

同步练习册答案