精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若b=2,c=6,∠A=$\frac{π}{4}$,则S△ABC=(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 根据题意,由三角形面积计算公式S△ABC=$\frac{1}{2}$bcsinA,其中而b=2,c=6,sinA=$\frac{\sqrt{2}}{2}$;代入计算即可得答案.

解答 解:根据题意,∠A=$\frac{π}{4}$,则sinA=$\frac{\sqrt{2}}{2}$,
而b=2,c=6,
则S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×6×$\frac{\sqrt{2}}{2}$=3$\sqrt{2}$,
故选:A.

点评 本题考查正弦定理的运用,解题的关键是掌握三角形面积计算公式S=$\frac{1}{2}$absinC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.等差数列{an}中,a2=5,a1+a5=12.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-3}$+n,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x||x-a|<1,x∈R},B={y|y=lg(x2+1),x∈R},若A⊆B,则实数a的取值范围是(  )
A.{a|a>1}B.{a|a≥1}C.{a|a≥-1}D.{a|a>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x<0时f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(-$\frac{1}{2}$)=1,试解不等式2f(x)<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)的图象过点(0,4),且关于方程f(x)=2x有两实数根:x1=1,x2=4;函数g(x)=2x+m.
(1)求f(x)解析式;
(2)若函数h(x)=f(x)-(2t-3)x(t∈R)在区间x∈[0,1]上最小值是$\frac{7}{2}$.求t的值;
(3)设f(x)与g(x)是定义在同一区间[p,q]上的两个函数,若函数F(x)=f(x)-g(x),在x∈[p,q]上有两个不同的零点,则称f(x)和g(x)在[p,q]上是“Ω函数”,若f(x)与g(x)在[0,3]上是“Ω函数”,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用定义证明函数f(x)=x-$\frac{2}{x}$在(1,+∞)上是增函数,并求x∈[1,3]时f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,计算$\frac{3sinα-cosα}{sinα+2cosα}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a表示“向东走了2S千米”,b表示“向南走了2S千米”,c表示“向西走了S千米”,d表示“向北走了S千米”(S>0),则(b-c)+(d-a)表示向西南走了$\sqrt{2}$S千米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一动点P在棱长为2的正方体ABCD-A1B1C1D1的内部,且点P到棱AB、AD、AA1的距离的平方和为2,则动点P的轨迹和正方体的侧面所围成的几何体的体积为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$;C.$\frac{4π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

同步练习册答案