精英家教网 > 高中数学 > 题目详情

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

【答案】(1) 0.902 (2) 0.254

【解析】

解:记“甲理论考核合格”为事件A1,“乙理论考核合格”为事件A2,“丙理论考核合格”为事件A3,记事件i为Ai的对立事件,i=1,2,3.记“甲实验考核合格”为事件B1,“乙实验考核合格”为事件B2,“丙实验考核合格”为事件B3.

(1)记“理论考核中至少有两人合格”为事件C,记为事件C的对立事件,

P(C)=P(A1A2A3+A1A2+A1A3A2A3)

=P(A1A2A3)+P(A1A2)+P(A1A3)+P(A2A3)

=0.9×0.8×0.7+0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7=0.902.

所以,理论考核中至少有两人合格的概率为0.902.

(2)记“三个人该课程考核都合格”为事件D.

P(D)=P[(A1·B1)·(A2·B2)·(A3·B3)]

=P(A1·B1)·P(A2·B2)·P(A3·B3)

=P(A1)·P(B1)·P(A2)·P(B2)·P(A3)·P(B3)

=0.9×0.8×0.8×0.7×0.7×0.9≈0.254.

所以,这三个人该课程考核都合格的概率为0.254.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n为正整数,试比较n22n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(  )
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如图所示.

销售单价/元

6

6.5

7

7.5

8

8.5

日均销售量/桶

480

460

440

420

400

380

请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,

(1)证明:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线过定点.

(1)若与圆相切,求的方程;

(2)若与圆相交于两点,线段的中点为,又的交点为,判断是否为定值.若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.
(1)求椭圆E的方程及点T的坐标;
(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA||PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程 sinx+cosx=k在区间[0, ]上有两个不同的实数解,则实数k的取值范围为

查看答案和解析>>

同步练习册答案