精英家教网 > 高中数学 > 题目详情

已知cosα=数学公式,且tanα<0,则sinα等于


  1. A.
    ±数学公式
  2. B.
    数学公式
  3. C.
    -数学公式
  4. D.
    ±数学公式
C
分析:由已知中cosα=,且tanα<0,我们可以判断出角α的位置,进而判断出sinα的符号,结合同角三角函数关系,即可求出答案.
解答:∵cosα=>0,且tanα<0,
故α为第四象限的角
则sinα=-=-=
故选C
点评:本题考查的知识点是同角三角函数的基本关系,其中由已知条件判断出角α的位置,进而判断出sinα的符号,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知极坐标系的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.直线l的参数方程为
x=1+
1
2
t
y=
3
2
t
(t为参数),圆C的极坐标方程为ρ2-4ρcosθ+4-a=0.若直线l与圆C相交于A、B且|AB|=1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),P为椭圆C上任意一点,且cos∠F1PF2的最小值为
1
3

(1)求椭圆C的方程;
(2)动圆x2+y2=t2
2
<t<
3
)与椭圆C相交于A、B、C、D四点,当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)若点A(2,2)在矩阵M=
.
cosα-sinα
sinαcosα
.
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵;
(3)在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值;
(4)已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinωx,0),
n
=(cosωx,-sinωx)(ω>0)
,在函数f(x)=
m
•(
m
+
n
)+t
的图象上,对称中心到对称轴的最小距离为
π
4
,且当x∈[0,
π
3
]
时f(x)的最小值为
3
2

(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)若对任意x1,x2∈[0,
π
3
]都有|f(x1)-f(x2)|<m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)设向量
a
=(cosωx-sinωx,-1),
b
=(2sinωx,-1),其中ω>0,x∈R,已知函数f(x)=
a
b
的最小正周期为4π.
(Ⅰ)求ω的值;
(Ⅱ)若sinx0是关于t的方程2t2-t-1=0的根,且x0∈(-
π
2
π
2
)
,求f(x0)的值.

查看答案和解析>>

同步练习册答案