精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3
cos2x+sinxcosx-
3
2

(1)求函数f(x)的最小正周期T,并求出函数f(x)的单调递增区间;
(2)求在[0,3π)内使f(x)取到最大值的所有x的和.
分析:(1)利用两角和与差的三角函数将f(x)=
3
cos2x+sinxcosx-
3
2
化为f(x)=sin(2x+
π
3
),即可求得函数f(x)的最小正周期T及函数f(x)的单调递增区间;
(2)由f(x)=sin(2x+
π
3
)=1可求得x,由x∈[0,3π)即可求得f(x)取到最大值的所有x的和.
解答:解:(1)∵f(x)=
3
cos2x+sinxcosx-
3
2

=
3
(1+cos2x)
2
+
1
2
sin2x-
3
2

=
3
2
cos2x+
1
2
sin2x
=sin(2x+
π
3
),…(2分)
故T=π,…(4分)
∵2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,
∴kπ-
12
≤x≤kπ+
π
12
,k∈Z,
∴f(x)的单调递增区间为:[kπ-
12
,kπ+
π
12
](k∈Z)…(6分)
(2)∵f(x)=1即sin(2x+
π
3
)=1,则2x+
π
3
=2kπ+
π
2

∴x=kπ+
π
12
(k∈Z)…(8分)
∵0≤x<3π,
∴k=0,1,2…(10分)
∴在[0,3π)内使f(x)取到最大值的所有x的和为
13π
4
…(12分)
点评:本题考查两角和与差的三角函数,考查正弦函数的单调性与最值,考查规范答题与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
,x≥0
-x
,x<0
,若f(a)+f(-1)=2,则a=(  )
A、-3B、±3C、-1D、±1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
则满f(x)=
1
4
的x的值(  )
A、只有2B、只有3
C、2或3D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=asinx-bcosx在x=
π
3
处有最小值-2,则常数a,b的值分别为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
cos(ωx+φ)
,对任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函数g(x)=3sin(ωx+φ)-2,则g(
π
3
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+?)(ω>0,0<?<
π
2
)
.若将f(x)的图象沿x轴向右平移
1
6
个单位长度,得到的图象经过坐标原点;若将f(x)的图象上所有的点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象经过点(
1
6
,1)
,则(  )
A、ω=π,?=
π
6
B、ω=2π,?=
π
3
C、ω=
4
,?=
π
8
D、适合条件的ω,?不存在

查看答案和解析>>

同步练习册答案