精英家教网 > 高中数学 > 题目详情
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=
13
,SB=
29

(1)求证:SC⊥BC;
(2)求SC与AB所成角的余弦值.
分析:解法一:建系,写出有关点的坐标,B,C,s,(1)要证SC⊥BC;只要证EF⊥面PAB,只要证)
SC
CB
=0即可;
(2)要求异面直线SC与AB所成的角的余弦值,只要求
SC
AB
所成角的余弦值即可;
解法二:综合法证明,(1)要证SC⊥BC,只要证AC⊥BC即可;
(2)要求SC与AB所成角的余弦值,通过平移找到SC与AB所成角,解三角形即可.
解答:解法一:如图,取A为原点,AB、AS分别为y、z轴建立空间直角坐标系,
∵AC=2,BC=
13
,SB=
29
,∴B(0,
17
,0)、S(0,0,2
3
)、C(2
13
17
4
17
,0),
精英家教网
SC
=(2
13
17
4
17
,-2
3
),
CB
=(-2
13
17
13
17
,0).
(1)∵
SC
CB
=0,∴SC⊥BC.
(2)设SC与AB所成的角为α,
AB
=(0,
17
,0),
SC
AB
=4,|
SC
||
AB
|=4
17

∴cosα=
17
17
,即为所求.

解法二:(1)∵SA⊥面ABC,AC⊥BC,AC是斜线SC在平面ABC内的射影,∴SC⊥BC.
精英家教网(2)如图,过点C作CD∥AB,过点A作AD∥BC交CD于点D,
连接SD、SC,则∠SCD为异面直线SC与AB所成的角.
∵四边形ABCD是平行四边形,CD=
17
,SA=2
3
,SD=
SA2+AD2
=
12+13
=5,
∴在△SDC中,由余弦定理得cos∠SCD=
17
17
,即为所求.
点评:考查利用空间向量证明垂直和求夹角和距离问题,以及面面垂直的判定定理,体现 了转化的思想方法,l利用综合法求异面直线所成的角,关键是找出这个角,把空间角转化为平面角求解,体现了转化的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O为BC中点.
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B-SC-E的平面角的余弦值为
15
5
?若存在,确定E点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,
3
2
,3,则此三棱锥的外接球的表面积为(  )

查看答案和解析>>

同步练习册答案