精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).

1)求曲线的直角坐标系方程和直线的普通方程;

2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.

【答案】(1),;(2), ,,.

【解析】

(1) 两边同时乘以,结合 即可求解;对于直线,消除参数即可得普通方程.

(2)由题意求出曲线的参数方程为,由到直线的距离为,可知,整理后可求出 的值,从而可得答案.

解:(1)由曲线的极坐标方程为,则

,得其标准方程为.

直线参数方程为(为参数),则其普通方程为.

(2)由(1)得曲线为圆心为,半径为5的圆,曲线的参数方程为

(为参数),则,化简为

可得.

时,注意到,联立方程组得

,此时对应的点坐标为.

时,同理可得,即点坐标为.

综上,符合条件的点坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m2m-1)x-5m-3m为何值时,f(x):

(1)是幂函数;

(2)是正比例函数;

(3)是反比例函数;

(4)是二次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机地填入图正方形ABCD的九个格子中,每格填一数,则其每列三数自上而下、每行三数自左至右顺次成等差数列的概率P=____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得吸烟与患肺癌有关的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是(

A.100个吸烟者中至少有99人患有肺癌

B.1个人吸烟,那么这个人有99%的概率患有肺癌

C.100个吸烟者中一定有患肺癌的人

D.100个吸烟者中可能一个患肺癌的人也没有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an=n2-n-30.

(1)求数列的前三项,60是此数列的第几项?

(2)n为何值时,an=0,an>0,an<0?

(3)该数列前n项和Sn是否存在最值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱中,侧棱底面,底面为菱形,

.的中点,相交于点.

(1)求证:平面 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数上单调递增;命题:函数上单调递减.

(Ⅰ)若是真命题,求实数的取值范围;

(Ⅱ)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:

(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;

(Ⅱ)从图中考核成绩满足的学生中任取3人,设表示这3人中成绩满足的人数,求的分布列和数学期望;

(Ⅲ)根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有两项技术指标需要检测,设各项技术指标达标与否互不影响,若项技术指标达标的概率为项技术指标达标的概率为,按质量检验规定:两项技术指标都达标的工艺品为合格品.

1)求一个工艺品经过检测至少一项技术指标达标的概率;

2)任意依次抽取该工艺品4个,设表示其中合格品的个数,求的分布列.

查看答案和解析>>

同步练习册答案