精英家教网 > 高中数学 > 题目详情
5.方程xy(x+y)=1所表示的曲线(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

分析 将方程中的x换为y,y换为x方程变为xy2+x2y=1与原方程相同,故曲线关于直线y=x对称.

解答 解:将方程中的x换为y,y换为x方程变为xy2+x2y=1与原方程相同,故曲线关于直线y=x对称,
故选D.

点评 本题考查函数的对称性,考查曲线方程的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥D-ABCO的底面是直角梯形,已知OC∥AB,AB⊥BC,OA=OB,OD⊥DA,AB=2OC,OC=OD=BC=DA=1,DB=$\sqrt{3}$.
(I)求证:平面AOD⊥平面ABCD;
(Ⅱ)求直线BC与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=m+2i,且(2+i)z是纯虚数,则实数m=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面积S=24,b=10,则a的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={2,0,11},则集合A的真子集个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(0,-2),椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,F是椭圆E的右焦点,直线AF的斜率为$\frac{2\sqrt{3}}{3}$,O为坐标原点
(1)求E的方程
(2)设过点A的动直线l与E相交于P,Q两点,问:是否存在直线l,使以PQ为直径的圆经过点原点O,若存在,求出对应直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{1}{2}$,倾斜角为$\frac{π}{4}$的动直线l与椭圆E交于M,N两点,则当△FMN的周长的取得最大值8时,直线l的方程为(  )
A.x-y-1=0B.x-y=0C.x-y-$\sqrt{3}$=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{3}$,左焦点F到直线l:x=9的距离为10,圆G:(x-1)2+y2=1,
(1)求椭圆的方程;
(2)若P是椭圆上任意一点,EF为圆N:(x-1)2+y2=4的任一直径,求$\overrightarrow{PE}•\overrightarrow{PF}$的取值范围;
(3)是否存在以椭圆上点M为圆心的圆M,使得圆M上任意一点N作圆G的切线,切点为T,都满足$\frac{|NF|}{|NT|}=\sqrt{2}$?若存在,求出圆M的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案