精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3-ax2+(a2+2a)x
,a∈R.
(1)当a=-2时,求f(x)在闭区间[-1,1]上的最大值与最小值;
(2)若线段AB:y=2x+3(0≤x≤2)与导函数y=f'(x)的图象只有一个交点,且交点在线段AB的内部,试求a的取值范围.
分析:(1)欲求函数的最大值与最小值,通过列表格的方法研究原函数的单调性及在端点处和极值处的函数值的大小;
(2)先将导函数与线段方程联立,得到一个二次函数g(x),此函数在区间(0,2)内只有一根,即g(0)•g(2)<0,即可求出a的取值范围.
解答:解:(1)当a=-2时,f(x)=
1
3
x3+2x2
.(1分)
求导得f'(x)=x2+4x=x(x+4).(2分).
令f'(x)=0,解得:x=-4或x=0.(3分)
列表如下:(6分)
x -1 (-1,0) 0 (0,1) 1
f'(x) - 0 +
f(x)
5
3
0
7
3
所以,f(x)在闭区间[-1,1]上的最大值是
7
3
,最小值是0.(7分)
(2)y=f'(x)=x2-2ax+a2+2a.(8分)
联立方程组
y=x2-2ax+a2+2a
y=2x+3
(9分)
得x2-2(a+1)x+a2+2a-3=0.(10分)
设g(x)=x2-2(a+1)x+a2+2a-3,则方程g(x)=0在区间(0,2)内只有一根,
相当于g(0)•g(2)<0,即(a2+2a-3)•(a2-2a-3)<0,(12分)
解得-3<a<-1或1<a<3.(14分)
点评:考查学生利用导数求函数在闭区间上的最值的能力以及函数和方程的综合运用能力,对于两个函数的交点问题,一般是将两个函数联立,转化成方程根的个数问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案