精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为正方形,平面为线段的中点,且.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

【答案】(1)证明见解析;(2)

【解析】

(1)连接,连接,由三角形的中位线得,然后证明平面

(2)为原点,以向量所在直线为轴,过的垂线为轴建立空间直角坐标系(如图),求出相关点的坐标,求出平面的法向量,设平面与平面所成锐二面角为,利用向量的数量积求解即可.

(1)连接,连接

因为四边形为正方形,所以的中点,

又因为为线段的中点,所以

因为平面平面

所以平面

(2) 为原点,以向量所在直线为轴,

的垂线为轴建立空间直角坐标系(如图)

,

因为所以

中:可知:

又因为为线段的中点,所以

设平面的法向量为,则

,则

又因为平面的法向量

设平面与平面所成锐二面角为

所以平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为(

A.22药物单位B.20药物单位C.12药物单位D.10药物单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.

某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程是.

(Ⅰ)求实数的值;

(Ⅱ)若函数有两个不同的零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线的焦点为是坐标原点,为抛物线上的一点,向量轴正方向的夹角为60°,且的面积为.

1)求抛物线的方程;

2)若抛物线的准线与轴交于点,点在抛物线上,求当取得最大值时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,,且.

1)求证:

2)若四棱柱的体积为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒   次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为1P是空间中任意一点,下列正确命题的个数是(

①若P为棱中点,则异面直线APCD所成角的正切值为

②若P在线段上运动,则的最小值为

③若P在半圆弧CD上运动,当三棱锥的体积最大时,三棱锥外接球的表面积为

④若过点P的平面与正方体每条棱所成角相等,则截此正方体所得截面面积的最大值为

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案