精英家教网 > 高中数学 > 题目详情
5.i为虚数单位,复数$\frac{-2-i}{1-i}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{-2-i}{1-i}$=$\frac{-(2+i)(1+i)}{(1-i)(1+i)}$=$\frac{-1-3i}{2}$在复平面内对应的点$(-\frac{1}{2},-\frac{3}{2})$在第三象限.
故选:C.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.三棱锥A-BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知n=$\frac{6}{π}$${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-2x)dx,则x(1-$\frac{2}{\sqrt{x}}$)n的展开式中的常数项为(  )
A.-60B.-50C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=ax在[0,1]上的最大值与最小值和为4,则函数y=ax-1在[0,1]上的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足:a1=2,an+1=3an+2,则{an}的通项公式为(  )
A.an=2n-1B.an=3n-1C.an=22n-1D.an=6n-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.1+i+i2+i3+…+i2015=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{12-4x-{x^2}}$的单调递增区间为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,2015]上具有性质 P.现给出如下命题:
①f(x)在[1,2015]上不可能为一次函数;
②函数f(x2)在[1,$\sqrt{2015}$]上具有性质P;
③对任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④若f(x)在x=1008处取得最大值 2016,则f(x)=2016,x∈[1,2015].
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.实数x,y,z满足x2+y2+z2=1,则xy-yz的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{2}{3}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

同步练习册答案