【题目】(本题满分16分)数列, , 满足: , , .
(1)若数列是等差数列,求证:数列是等差数列;
(2)若数列, 都是等差数列,求证:数列从第二项起为等差数列;
(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
【答案】(1)详见解析(2)详见解析(3)数列成等差数列.
【解析】试题分析:(1)证明一个数列为等差数列,一般从等差数列定义出发: ,其中为等差数列的公差(2)同(1),先根据关系式, 解出,再从等差数列定义出发,其中分别为等差数列, 的公差(3)探究性问题,可将条件向目标转化,一方面,所以,即,另一方面,所以,整理得,从而,即数列成等差数列.
试题解析:证明:(1)设数列的公差为,
∵,
∴,
∴数列是公差为的等差数列. 4分
(2)当时, ,
∵,∴,∴,
∴,
∵数列, 都是等差数列,∴为常数,
∴数列从第二项起为等差数列. 10分
(3)数列成等差数列.
解法1 设数列的公差为,
∵,
∴,∴, , ,
∴,
设,∴,
两式相减得: ,
即,∴,
∴,
∴, 12分
令,得,
∵,∴,∴,
∴,∴,
∴数列()是公差为的等差数列, 14分
∵,令, ,即,
∴数列是公差为的等差数列. 16分
解法2 ∵, ,
令, ,即, 12分
∴, ,
∴,
∵数列是等差数列,∴,
∴, 14分
∵,∴,
∴数列是等差数列. 16分
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣2ax+1+lnx
(1)当a=0时,若函数f(x)在其图象上任意一点A处的切线斜率为k,求k的最小值,并求此时的切线方程;
(2)若函数f(x)的极大值点为x1 , 证明:x1lnx1﹣ax12>﹣1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为自然对数底数.
(1)当时,求函数在点处的切线方程;
(2)讨论函数的单调性,并写出相应的单调区间;
(3)已知,若函数对任意都成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分16分)如图,在平面直角坐标系中,离心率为的椭圆 的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时, .
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且 =λ ,若 ≥ ,则λ的取值范围是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com