精英家教网 > 高中数学 > 题目详情

【题目】(本题满分16分)数列满足:

1)若数列是等差数列,求证:数列是等差数列;

2)若数列都是等差数列,求证:数列从第二项起为等差数列;

3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.

【答案】(1)详见解析(2)详见解析(3)数列成等差数列.

【解析】试题分析:(1)证明一个数列为等差数列,一般从等差数列定义出发: ,其中为等差数列的公差(2)同(1),先根据关系式解出,再从等差数列定义出发,其中分别为等差数列的公差(3)探究性问题,可将条件向目标转化,一方面,所以,即,另一方面,所以,整理得,从而,即数列成等差数列.

试题解析:证明:(1)设数列的公差为

数列是公差为的等差数列. 4分

2)当时,

数列都是等差数列,为常数,

数列从第二项起为等差数列. 10分

3)数列成等差数列.

解法1 设数列的公差为

, ,

两式相减得:

, 12分

,得

数列)是公差为的等差数列, 14分

,令,即

数列是公差为的等差数列. 16分

解法2

,即, 12分

数列是等差数列,

, 14分

数列是等差数列. 16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣2ax+1+lnx
(1)当a=0时,若函数f(x)在其图象上任意一点A处的切线斜率为k,求k的最小值,并求此时的切线方程;
(2)若函数f(x)的极大值点为x1 , 证明:x1lnx1﹣ax12>﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数底数.

(1)当时,求函数在点处的切线方程;

(2)讨论函数的单调性,并写出相应的单调区间;

(3)已知,若函数对任意都成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)如图,在平面直角坐标系中,离心率为的椭圆 的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,

1)求椭圆的标准方程;

2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且 ,若 ,则λ的取值范围是(
A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)

若直线,则在平面内,一定不存在与直线平行的直线.

若直线,则在平面内,一定存在无数条直线与直线垂直.

若直线,则在平面内,不一定存在与直线垂直的直线.

若直线,则在平面内,一定存在与直线垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,且|kb|=| kb|(k>0).

(Ⅰ)用k表示数量积

(Ⅱ)求的最小值.

查看答案和解析>>

同步练习册答案