精英家教网 > 高中数学 > 题目详情
19.已知曲线f(x)=x+e2x-m在x=0处的切线与坐标轴围成的三角形的面积为$\frac{1}{6}$,则实数m的值为2或0.

分析 先求出其导函数,得到切线方程;进而求出切线与两坐标轴的交点坐标,即可求出切线l与两坐标轴所围成的三角形的面积,可得结论.

解答 解:∵f(x)=x+e2x-m,∴f′(x)=1+2e2x
∴当x=0时,f′(x)=3,
∴曲线f(x)=x+e2x-m在x=0处的切线斜率为3,又∵切点坐标为(0,1-m),
∴切线的方程为:y-1+m=3x⇒y=3x+1-m.
故切线l与两坐标轴的交点坐标为:(0,1-m)和($\frac{m-1}{3}$,0)
∴切线l与两坐标轴所围成的三角形的面积S=$\frac{1}{2}$×|1-m|×|$\frac{m-1}{3}$|=$\frac{1}{6}$,
∴m=2或0,
故答案为2或0.

点评 本题主要考查导数在求曲线上切线的斜率方面的应用,做题时熟记导数的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知$f(x)=sin(\frac{π}{6}-2x)+\frac{3}{2},x∈R$
(1)求函数f(x)的最大值及取得最大值时自变量x的集合;
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果f(x)图象关于原点对称,在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是(  )
A.增函数且最小值是-5B.增函数且最大值是-5
C.减函数且最大值是-5D.减函数且最小值是-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知Sn是等差数列{an}的前n项和,若a1=-2016,$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}=6$,则S2017=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列4个命题:
①函数$y=\frac{1}{x}$在定义域上是减函数
②命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
③若“¬p或q”是假命题,则“p且¬q”是真命题;
④?a,b∈(0,+∞),当a+b=1时,$\frac{1}{a}+\frac{1}{b}=3$;
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,且a1=2,S5=30,数列{bn}的前n项和为Tn,且Tn=2n-1.
(I)求数列{an},{bn}的通项公式;
(II)设cn=lnbn+(-1)nlnSn,求数列{cn}的前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-5x-6=0},则A∩N*=(  )
A.B.{-1}C.{1}D.{6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1cm,则四面体P-ABC的外接球(顶点都在球面上)的表面积为3πcm2

查看答案和解析>>

同步练习册答案