设函数f(x)=6x3+3(a+2)x2+2ax.
(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;
(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.
科目:高中数学 来源:重庆市西南师大附中2010届高三下学期3月月考数学文科试题 题型:022
设函数f(x)=x2-6x+5,若实数x,y满足条件,则的最大值是________.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年黑龙江省高三第三次月考数学文卷 题型:解答题
设函数f(x)=-6x+5,XR
(1) 求函数f(x)的单调区间和极值
(2) 若关于x的方程f(x)=a有三个不同实根,求实数a的范围.
(3) 已知当x(1,+∞)时,f(x)≥K(x-1)恒成立,求实数K的取值范围。
查看答案和解析>>
科目:高中数学 来源:广东省模拟题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;
(3)已知当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2.
(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)设函数F(x)=[f′(x)+6x+1]·e2x,试判断函数F(x)的极值点个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com