精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线方程为.

(1)求该双曲线的实轴长、虚轴长、离心率;

(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.

【答案】(1)实轴长为2a=6、虚轴长2b=8、离心率;(2)y2=-12x.

【解析】试题分析:(1)将双曲线方程化为标准方程,求出,即可得到所求实轴长、虚轴长、离心率;
(2)求出双曲线的中心坐标和左顶点坐标,设抛物线C的方程为y2=-2px(p>0),由焦点坐标,可得p的方程,解方程即可得到所求.

试题解析:

(1)双曲线方程为16x2-9y2=144, 即为-=1, 可得a=3,b=4,c==5,

则双曲线的实轴长为2a=6、虚轴长2b=8、离心率e==

(2)抛物线C的顶点是该双曲线的中心(0,0), 而焦点是其左顶点(-3,0),

设抛物线C的方程为y2=-2px(p>0), 由-=-3,解得p=6.

则抛物线C的方程为y2=-12x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)为奇函数,且f(x)在(﹣∞,0)内是增函数,f(﹣2)=0,则xf(x)>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣ 为奇函数.
(1)求a的值;
(2)试判断函数f(x)在(﹣∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2﹣(m﹣2)t]+f(t2﹣m+1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌茶壶的原售价为80元/个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;…,一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个;乙店一律按原价的75%销售.现某茶社要购买这种茶壶x个,如果全部在甲店购买,则所需金额为y1元;如果全部在乙店购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)该茶社去哪家茶具店购买茶壶花费较少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题pxRkx2+1≤0,命题qxRx2+2kx+10

1)当k=3时,写出命题p的否定,并判断真假;

2)当pq为假命题时,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;

(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(Ⅰ)求分数在[50,60)的频率及全班人数;

(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;

(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x (x∈R).
(1)讨论f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案