精英家教网 > 高中数学 > 题目详情
5.设实数x、y满足x+2xy-1=0,则x+y取值范围是$(-∞,-\sqrt{2}-\frac{1}{2}]$∪$[\sqrt{2}-\frac{1}{2},+∞)$.

分析 由x+2xy-1=0,可得y=$\frac{1-x}{2x}$,(x≠0).则x+y=x+$\frac{1-x}{2x}$=x+$\frac{1}{2x}$-$\frac{1}{2}$,对x分类讨论,利用基本不等式的性质即可得出.

解答 解:∵x+2xy-1=0,∴y=$\frac{1-x}{2x}$,(x≠0).
则x+y=x+$\frac{1-x}{2x}$=x+$\frac{1}{2x}$-$\frac{1}{2}$,
x>0时,x+y≥$2\sqrt{x•\frac{1}{2x}}$-$\frac{1}{2}$=$\sqrt{2}$-$\frac{1}{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时取等号.
x<0时,x+y=$-(-x+\frac{1}{-2x})$-$\frac{1}{2}$≤-2$\sqrt{(-x)•\frac{1}{-2x}}$-$\frac{1}{2}$=-$\sqrt{2}$-$\frac{1}{2}$,当且仅当x=-$\frac{\sqrt{2}}{2}$时取等号.
综上可得:x+y取值范围是$(-∞,-\sqrt{2}-\frac{1}{2}]$∪$[\sqrt{2}-\frac{1}{2},+∞)$.
故答案为:$(-∞,-\sqrt{2}-\frac{1}{2}]$∪$[\sqrt{2}-\frac{1}{2},+∞)$.

点评 本题考查了基本不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知椭圆具有性质:若M,N是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0且a,b为常数)上关于y轴对称的两点,P是椭圆上的左顶点,且直线PM,PN的斜率都存在(记为kPM,kPN),则kPM•kPN=$\frac{{b}^{2}}{{a}^{2}}$.类比上述性质,可以得到双曲线的一个性质,并根据这个性质得:若M,N是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上关于y轴对称的两点,P是双曲线C的左顶点,直线PM,PN的斜率都存在(记为kPM,kPN),双曲线的离心率e=$\sqrt{5}$,则kPM•kPN等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为$4+2\sqrt{3}$,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$z=\frac{3+4i}{i}$,则|z|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的通项公式为an=$\frac{2}{{n}^{2}+n}$,那么数列{an}的前99项之和是(  )
A.$\frac{99}{100}$B.$\frac{101}{100}$C.$\frac{99}{50}$D.$\frac{101}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1(-$\sqrt{3}$,0),M(1,y)(y>0)为椭圆上的一点,△MOF1的面积为$\frac{3}{4}$.
(1)求椭圆C的标准方程;
(2)若点T在圆x2+y2=1上,是否存在过点 A(2,0)的直线l交椭圆C于点 B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,曲线M:y2=x与曲线N:(x-4)2+2y2=m2(m>0)相交于A、B、C、D四个点.
(1)求m的取值范围;
(2)求四边形ABCD的面积的最大值及此时对角线AC与BD的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知矩阵$M=[{\begin{array}{l}2&a\\ b&1\end{array}}]$,其中a,b均为实数,若点A(3,-1)在矩阵M的变换作用下得到点B(3,5),求矩阵M的特征值.

查看答案和解析>>

同步练习册答案