精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ax3+bx2+cx+d(a≠0)的图象如图所示,则b的取值范围是(  )
A.(-∞,0)B.(0,1)C.(1,2)D.(2,+∞)

分析 先根据函数的图象得出函数的三个零点,从而得出函数的解析式,再结合图象的特征定出系数a的取值范围,从而问题解决.

解答 解:由图得:函数有三个零点:0,1,2.
由图象知x=0,1,2是方程f(x)=0的三个根,
则可设f(x)=ax(x-1)(x-2),
即f(x)=ax3-3ax2+2ax=ax3+bx2+cx+d.
因此b=-3a.因为当x>2时f(x)>0,
所以a>0,b<0.
故b∈(-∞,0)
故选A:.

点评 本小题主要考查函数的图象、函数的图象的应用、函数的零点等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知1<x<m,a=logm2x,b=logmx2,c=logm(logmx),试比较a、b、c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设奇函数f(x)是定义域在R上的减函数,且不等式f(x2-a)+f(2x-1)<0对于任意x∈[1,3]恒成立,则实数a的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p;对?x∈R,?m0∈R.使4x+2xm0+1=0.若命题¬p是假命题.则实数m0的取值范围是(  )
A..[-2,2]B..[2,+∞)C.(-∞,-2]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={(x,y)|y=2|x|},B={(x,y)|y=m,m∈R}.
(1)若A∩B≠∅,求m的取值范围;
(2)若A∩B=∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2+x}{x-1}$的单调递减区间是(-∞,1),(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.g(x)=$\sqrt{{3}^{x}-1}$+lg(x+1)的定义域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:cos$\frac{α}{2}$•$\sqrt{\frac{1-sin\frac{α}{2}}{1+sin\frac{α}{2}}}$+cos$\frac{α}{2}$•$\sqrt{\frac{1+sin\frac{α}{2}}{1-sin\frac{α}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=2x-x2(x∈[0,3])的值域是[-3,1].

查看答案和解析>>

同步练习册答案