【题目】已知三棱锥中,为等腰直角三角形,,平面,且,且,分别为的中点.
(1)求证:直线平面;
(2)求锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】过轴正半轴上一点做直线与抛物线交于,,两点,且满足,过定点与点做直线与抛物线交于另一点,过点与点做直线与抛物线交于另一点.设三角形的面积为,三角形的面积为.
(1)求正实数的取值范围;
(2)连接,两点,设直线的斜率为;
(ⅰ)当时,直线在轴的纵截距范围为,则求的取值范围;
(ⅱ)当实数在(1)取到的范围内取值时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考取消文理科,实行“3+3”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年),并把调查结果制成如表:
(1)请根据上表完成下面2×2列联表,并判断是否有95%的把握认为对新高考的了解与年龄(中青年、中老年)有关?
附:K2.
(2)现采用分层抽样的方法从中老年人中抽取8人,再从这8人中随机抽取2人进行深入调查,求事件A:“恰有一人年龄在[45,55)”发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点A是直线上的动点,过作直线,,线段的垂直平分线与交于点.
(1)求点的轨迹的方程;
(2)若点,是直线上两个不同的点,且的内切圆方程为,直线的斜率为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:存在,对任意的,都有(为常数),则称具有性质
(1)若无穷数列具有性质,且,求的值
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有性质,并说明理由.
(3)设无穷数列既具有性质,又具有性质,其中互质,求证:数列具有性质
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )
A. 各月的平均最低气温都在0℃以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为,两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
组 | 16 | 34 | 50 |
组 | 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com