精英家教网 > 高中数学 > 题目详情
17.若f(x)=-x2+ax+2+lg(2-|x|)(a∈R)是偶函数,且f(1-m)<f(m),则实数m的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,2)D.(-1,$\frac{1}{2}$)

分析 利用f(x)=-x2+ax+2+lg(2-|x|)(a∈R)是偶函数,求出a,确定定义域为(-2,2),在(0,2)上单调递减,f(1一m)<f(m),化为2>|1一m|>|m|,即可求出实数m的取值范围.

解答 解:∵f(x)=-x2+ax+2+lg(2-|x|)(a∈R)是偶函数,
∴f(-x)=f(x)即-x2-ax+2+lg(2-|x|)=-x2+ax+2+lg(2-|x|),
∴a=0,
∴f(x)=-x2+2+lg(2-|x|)定义域为(-2,2),在(0,2)上单调递减,
∵函数是偶函数,且f(1-m)<f(m),
∴f(|1-m|)<f(|m|),
∴2>|1-m|>|m|,
∴-1<m<$\frac{1}{2}$,
故选:D.

点评 本题考查函数的奇偶性、单调性,考查学生的计算能力,正确转化是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如果loga2>logb2>0,那么(  )
A.1<a<bB.1<b<aC.0<a<b<1D.0<b<a<1

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:解答题

数列满足:①;②;③

(1)求的通项公式;

(2)设,问:是否存在常数,使得对于任意恒成立?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[0,1]上单调递增,设a=f(3),b=f($\sqrt{2}$),c=f(2),则a,b,c大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则实数k的值为(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.±$\frac{3}{5}$D.±$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆F1:(x+$\sqrt{3}$)2+y2=r2与圆F2:(x-$\sqrt{3}$)2+y2=(4-r)2(0<r<4)的公共点的轨迹为曲线E,且曲线E与y轴的正半轴相交于点M,若曲线E上相异两点A,B满足直线MA,MB的斜率之积为$\frac{1}{3}$•
(Ⅰ)求曲线E的方程;
(Ⅱ)证明直线AB恒过定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=$\frac{[x]}{x}$(x>0),则给出以下四个结论正确的是(  )
A.函数f(x)的值域为[0,1]
B.函数f(x)的图象是一条曲线
C.函数f(x)是(0,+∞)上的减函数
D.函数g(x)=f(x)-a有且仅有3个零点时$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行下面框图,则输出m的结果是(  )
 
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{lg(x+1)}{x-2}$的定义域是(  )
A.(-1,+∞)B.[-1,+∞)C.(-1,2)∪(2,+∞)D.[-1,2)∩(2,+∞)

查看答案和解析>>

同步练习册答案