精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(ex+1)—ax.

(Ⅰ)设a>0,讨论f(x)的单调性;

(Ⅱ)当a=9时,若△ABC的三个顶点A、B、C都在函数y=f(x)的图像上,且横坐标成等差数列,求证:△ABC为钝角三角形.

解:(Ⅰ)由已知f′(x)=

当a≥1时,f′(x)<0,y=f(x)在R单调递减;

当0<a<1时,解f′(x)>0得(1-a)(ex+1)>1即ex>-1+  ∴x>ln

∴当0<a<1时,y=f(x)在(1n,+∞)内单调递增;在(-∞,In)内单调递减

(Ⅱ)当a=9时,f(x)=ln(ex+1)-9x在(-∞,+∞)上单调递减

设A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))不妨设x1<x2<x3

=(x1-x2,f(x1)-f(x2)),=(x3-x2,f(x3)-f(x2))

又∵·=(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))

又由f(x)的单调性知:

x1-x2<0,x3-x2>0,f(x1)- f(x2)>0,f(x3)-f(x2)<0

<0   ∴cos∠ABC=<0

∴△BAC为钝角三角形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案