精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四边形为菱形,,二面角为直二面角,点是棱的中点.

(Ⅰ)求证:

(Ⅱ)若,当二面角的余弦值为时,求直线与平面所成的角.

【答案】(Ⅰ)证明见解析;(Ⅱ)

【解析】

(Ⅰ)设点是棱的中点,连接,根据面面垂直的性质定理,得到平面,进而得到,再由,结合线面垂直的判定定理,即可求解;

(Ⅱ)解法一:设点的交点,证得为二面角的平面角,结合解三角形的知识,即可求解;解法二:设点的交点,以所在直线为所在直线为轴,过点垂直平面的直线为轴,建立空间直角坐标系,可得平面的一个法向量,结合向量的夹角公式,即可求解.

(Ⅰ)如图所示,设点是棱的中点,连接

及点是棱的中点,可得

又二面角为直二面角,故平面

又因为平面,所以

又因为四边形为菱形,所以

的中位线,所以,可得

又由,且平面平面

所以平面 又因为平面

所以

(Ⅱ)解法一:设点的交点,

由(Ⅰ)可知平面

均在平面内,从而有

为二面角的平面角,

因为,所以为等边三角形.

不妨设菱形的边长为

则在中,

于是

中,

整理得

因为平面,所以为直线与平面所成的角.

所以直线与平面所成的角为.

解法二:设点的交点,

所在直线为所在直线为轴,

过点垂直平面的直线为轴,建立空间直角坐标系.

,则

设平面的法向量为

,即

,得的一个法向量为

,解得

则直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】m为整数,.整数数列满足:不全为零,且对任意正整数n,均有.证明:若存在整数rs(r>s≥2)使得,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点坐标是的周长为是坐标原点,点满足.

1)求点的轨迹的方程;

2)若互相平行的两条直线分别过定点,且直线与曲线交于两点,直线与曲线交于两点,若四边形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面四边形中,为直角,为等边三角形,现把沿着折起,使得平面与平面垂直,且点M的中点.

1)求证:平面平面

2)若,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程,点在直线上,直线与曲线交于两点.

1)求曲线的普通方程及直线的参数方程;

2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:幂势既同,则积不容异.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为(

A.πB.πC.4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.

1)设射线l的极坐标方程为,若射线l与曲线C交于AB两点,求AB的长;

2)设MN是曲线C上的两点,若∠MON,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的离心率为,点Ma0),N0b),O00),且△OMN的面积为1

1)求椭圆C的标准方程;

2)设ABx轴上不同的两点,点A(异于坐标原点)在椭圆C内,点B在椭圆C外.若过点B作斜率不为0的直线与C相交于PQ两点,且满足∠PAB+QAB180°.证明:点AB的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,.为邻边作平行四边形,连接.

1)求证:平面

2)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案