精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)是定义在R上的偶函数,且x∈[0,+∞)时,f′(x)<0,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围是(  )
A.$[-\frac{23}{27},1]$B.$[\frac{23}{27},1]$C.[1,3]D.(-∞,1]

分析 根据条件即可得出f(x3-x2+a)≥f(1),而f(x)为偶函数,从而得出f(|x3-x2+a|)≥f(1),根据单调性即可得出|x3-x2+a|≤1,进而得出-x3+x2-1≤a≤-x3+x2+1,而x∈[0,1].可设g(x)=-x3+x2+1,h(x)=-x3+x2-1,然后求导数,根据导数符号判断g(x),h(x)的单调性,进而得出g(x)的最小值,h(x)的最大值,从而得出a的取值范围.

解答 解:f(x)是R上的偶函数;
∴f(-x3+x2-a)=f(x3-x2+a);
∴由f(x3-x2+a)+f(-x3+x2-a)≥2f(1)得,2f(x3-x2+a)≥2f(1);
∴f(x3-x2+a)≥f(1);
∴f(|x3-x2+a|)≥f(1);
又f(x)在[0,+∞)上递减;
∴|x3-x2+a|≤1;
∴-1≤x3-x2+a≤1;
∴-x3+x2-1≤a≤-x3+x2+1对x∈[0,1]恒成立;
设g(x)=-x3+x2+1,h(x)=-x3+x2-1,则g′(x)=h′(x)=-3x(x-$\frac{2}{3}$);
∴x∈[0,$\frac{2}{3}$]时,g(x),h(x)都单调递增,x∈($\frac{2}{3}$,1]时,g(x),h(x)都单调递减;
∴h(x)的最大值为f($\frac{2}{3}$)=-$\frac{23}{27}$,g(x)的最小值为f(0)=1;
∴-$\frac{23}{27}$≤a≤1;
即实数a的取值范围为[-$\frac{23}{27}$,1];
故选:A.

点评 考查偶函数的定义,减函数的定义,绝对值不等式的解法,以及函数导数符号和函数单调性的关系,根据函数单调性求函数最值的方法,以及恒成立问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.(1)在△ABC中,若b=2,B=30°,C=135°,则a=$\sqrt{6}$-$\sqrt{2}$.
(2)在△ABC中,若S△ABC=$\frac{1}{4}$ (a2+b2-c2),那么角∠C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设U=R,P={x|x>1},Q={x|0<x<2},则∁U(P∪Q)=(  )
A.{x|x≤0}B.{x|x≤1}C.{x|x≥2}D.{x|x≤1或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2-4ax+alnx(a∈R)
(1)讨论f(x)的极值点的个数
(2)若f(x)有两个不同的极值点x1,x2,证明:f(x1)+f(x2)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\stackrel{→}{AB}$+$\stackrel{→}{BC}$=(  )
A.$\stackrel{→}{AC}$B.$\stackrel{→}{BD}$C.$\stackrel{→}{CA}$D.$\stackrel{→}{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{mx-6}{{{x^2}+n}}$的图象在点P(-1,f(-1))处的切线方程为x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f1(x)=sin x+cos x,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),则f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是(  )
①车站的位置设在C点好于B点;
②车站的位置设在B点与C点之间公路上任何一点效果一样;
③车站位置的设置与各段小公路的长度无关.
A.B.C.①③D.②③

查看答案和解析>>

同步练习册答案