精英家教网 > 高中数学 > 题目详情
(2013•绵阳二模)设m是一个正整数,对两个正整数a、b,若a-b=km(k∈Z,k≠0),我们称a、b模m同余,用符号a=b(Modm)表示; 在6=b(Modm)中,当
bm
∈N
,且m>1时,b的所有可取值为
2或3或4
2或3或4
分析:由两数同余的定义,可得6-b=km(k是非零整数).由题意,m是6的正约数,可得m=2、3或6,再分情况讨论式子6-b=km,
易得本题的答案.
解答:解:由两个数同余的定义,可得
6=b(Modm)中,则称6-b=km(k是非零整数),
即6=b+km,
又∵
b
m
∈N
,且m>1,
∴m是6的正约数,可得m=2、3或6
①当m=2时,6=b+2k,可得b=2或4符合题意;
②当m=3时,6=b+3k,可得b=3符合题意;
⑥当m=6时,根据定义不符合题意,舍去
故答案为:2或3或4
点评:本题是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)我们把离心率之差的绝对值小于
1
2
的两条双曲线称为“相近双曲线”.已知双曲线
x2
4
-
y2
12
=1
与双曲线
x2
m
-
y2
n
=1
是“相近双曲线”,则
n
m
的取值范围是
[
4
21
4
5
]∪[
5
4
21
4
]
[
4
21
4
5
]∪[
5
4
21
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知△ABC的面积S满足3≤S≤3
3
,且
AB
BC
=6
AB
BC
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知函数f(x)=
13
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求曲线C上任意一点处的切线的斜率的取值范围;
(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;
(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)若loga(a2+1)<loga2a<0,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案