精英家教网 > 高中数学 > 题目详情
19.若sinα=$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

分析 由已知利用二倍角的余弦函数公式即可计算得解.

解答 解:∵sinα=$\frac{\sqrt{3}}{2}$,
∴cos2α=1-2sin2α=1-2×($\frac{\sqrt{3}}{2}$)2=-$\frac{1}{2}$.
故选:D.

点评 本题主要考查了二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为60°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,则$|\overrightarrow{OC}|$=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$a={3^{\frac{1}{3}}},b={({\frac{1}{4}})^{3.2}},c={log_{0.7}}3$,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=-x2+2x的定义域和值域分别是[m,n]和[3m,3n],则m+n=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,圆C的方程为ρ=4$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t为参数),
(1)求圆C的直角坐标方程与直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求三角形△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点F1,F2分别为左、右焦点,若双曲线右支上存在点P满足$\frac{|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{2}}|}$=e(e为双曲线的离心率),则e的最大值为(  )
A.4$\sqrt{2}$B.3+$\sqrt{5}$C.$\sqrt{2}$+1D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)为R上的奇函数;
③已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
其中正确的命题是①②③..(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{kx+k(1-{a}^{2}),(x≥0)}\\{{x}^{2}+({a}^{2}-4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x1,x2(x1≠x2),使得f(x2)-f(x1)=0成立,k=f(a)=$\frac{(3-a)^{2}}{1-{a}^{2}}$(0<a≤4).(并且写出a的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是(  )
A.等腰直角三角形B.等边三角形C.直角三角形D.钝角三角形

查看答案和解析>>

同步练习册答案