精英家教网 > 高中数学 > 题目详情

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(Ⅰ);(Ⅱ)没有95%以上的把握认为二者有关.

【解析】试题分析:(1人中该日走路步数超过步的有根据古典概型概率公式即可得出结果;(2)根据所给数据,得出列联表,利用公式计算与临界值比较即可得出结论.

试题解析:(1)由题知,40人中该日走路步数超过5000步的有34人,频率为,所以估计他的所有微信好友中每日走路步数超过5000步的概率为

(2)

,故没有95%以上的把握认为二者有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作直线分别交轴的正半轴于两点.

(Ⅰ)当取最小值时,求出最小值及直线的方程;

(Ⅱ)当取最小值时,求出最小值及直线的方程;

(Ⅲ)当取最小值时,求出最小值及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然对数的底数,e=2.71828…
(1)当a=0时,解不等式f(x)<2;
(2)求函数f(x)的单调增区间;
(3)设a≥ ,讨论关于x的方程f(f(x))= 的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分层抽样的方法从某校学生中抽取一个容量为60的样本,其中高二年级抽取20人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 轴的交点是椭圆 的一个焦点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,是否存在使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有__________种(用数字作答).

查看答案和解析>>

同步练习册答案