精英家教网 > 高中数学 > 题目详情
直角三角形ABC中,AD是斜边BC上的中线,若AB,AD,AC成等比数列,则∠ADC等于______.
由题意AB,AD,AC成等比数列得AD2=AB×AC
又直角三角形ABC中,AD是斜边BC上的中线,
∴AD2=
1
4
BC2
又AB×AC=2SABC=4SADC=4×
1
2
AD×DC×sin∠ADC=4×
1
2
×
1
2
BC×
1
2
BC×sin∠ADC=
1
2
BC2sin∠ADC
1
4
BC2=
1
2
BC2sin∠ADC
∴sin∠ADC=
1
2

∴∠ADC=
π
6
6

故答案为:
π
6
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直角三角形ABC中,斜边BC长为2,O是平面ABC内一点,点
-m
满足
OP
=
OA
+
1
2
(
AB
+
AC
)
,则|
AP
|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰直角三角形ABC中,AB=1,锐角顶点C在平面α内,β∥α,α、β的距离为1,随意旋转三角形ABC,则三角形ABC在β另一侧的最大面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求直线AB与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中点,M是CD上的动点.
(1)若M是CD的中点,求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步练习册答案