精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点是椭圆上的动点,且面积的最大值为.

1)求椭圆的方程及离心率;

2)若是椭圆的左、右顶点,直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以为直径的圆与直线恒相切.

【答案】1,离心率为;(2)见解析

【解析】

1)由题得关于的方程组,解之即得椭圆的方程和离心率;(2)由题意可设直线的方程为,设点的坐标为,求出 ;再对分类讨论得当点在椭圆上运动时,以为直径的圆与直线恒相切.

1)由题意可设椭圆的方程为;由题意知

解得,所以椭圆的方程为,离心率为

2)证明:由题意可设直线的方程为

则点坐标为中点的坐标为

,得

设点的坐标为,则,所以

因为点坐标为,当时,点的坐标为,直线轴,点的坐标为

此时以为直径的圆与直线相切;

时,则直线的斜率为,所以直线的方程为

到直线的距离为

又因为,所以,故以为直径的圆与直线相切;

综上,当点在椭圆上运动时,以为直径的圆与直线恒相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求函数的单调区间;

3)判断函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出下表数据:

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以统计数据为依据,求出关于的线性回归方程

2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气数值不合格的天数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点,点均在圆上,且,过点的平行线分别交两点.

1)求点的轨迹方程;

2)过点的动直线与点的轨迹交于两点.问是否存在常数,使得点为定值?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中装有2个白球,3个黑球,乙袋中装有1个白球,2个黑球,这些球除颜色外完全相同.

1)从两袋中各取1个球,记事件:取出的2个球均为白球,求

2)每次从甲、乙两袋中各取2个球,若取出的白球不少于2个就获奖(每次取完后将球放回原袋),共取了3次,记获奖次数为,写出的分布列并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为双曲线上任一点,,则以为直径的圆与以双曲线实轴长为直径的圆(

A.相切B.相交C.相离D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若的极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。

(Ⅰ)求椭圆C的方程;

(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案