精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面为正方形,平面.已知为线段上的一点,二面角与二面角的大小相等.则的长为______.

【答案】

【解析】

如图所示,过EEHADH,过HMHBCM,连结ME

同理过FFGADG,过GNGBCN,连结NF

AE⊥平面CDECD平面CDEAECDCDAD

AEAD=AADAE平面DAE

CD⊥平面DAEEH平面DAECDEH

CDAD=D,CD,AD平面ABCDEH⊥平面ABCD

HEBCBC⊥平面MHEHME为二面角E-BC-D的平面角,

同理,∠GNF为二面角F-BC-D的平面角,

MHAB,又

tanHME=,而∠HME=2GNF

tanGNF=,

GFHE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,把等腰直角三角形沿斜边所在直线旋转至的位置,使.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知垂直于梯形所在的平面,的中点,.若四边形为矩形,线段交于点.

(1)证明:∥平面.

(2)求二面角的大小。

(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,请求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形为直角梯形,为矩形,平面平面

1)若点中点,求证:平面

2)若点为线段上一动点,求与平面所成角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为函数的导函数.

1)讨论的单调性;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集合中删去个数,使得剩下的元素中,任两个数之和均不为2015的因数。求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

时,判断直线与曲线的位置关系;

若直线与曲线相切于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次考试中500名学生的物理(满分为150分)成绩服从正态分布,数学成绩的频率分布直方图如图所示.

(Ⅰ)如果成绩大于135分为特别优秀,那么本次考试中的物理、数学特别优秀的大约各有多少人?

(Ⅱ)如果物理和数学两科都特别优秀的共有4人,是否有99.9%的把握认为物理特别优秀的学生,数学也特别优秀?

附:①若,则

②表及公式:

0.50

0.40

0.010

0.005

0.001

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案