精英家教网 > 高中数学 > 题目详情

【题目】某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.

(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?

(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有一名男生的概率.

【答案】I,;(II.

【解析】试题分析:(Ⅰ)由频率分布直方图可分别得到男生,女生优秀的频率,再乘以总人数,即可得到男、女生优秀人数;(Ⅱ)构建有序实数对,用枚举法列举所有可能的情形和满足题意的情形,再利用古典概型的计算公式求解即可.

试题解析:

解:(Ⅰ)由题可得,男生优秀人数为人,

女生优秀人数为人.

(Ⅱ)因为样本容量与总体中的个体数的比是

所以样本中包含男生人数为人,女生人数为人.

设两名男生为 ,三名女生为

则从5人中任意选取2人构成的所有基本事件为: 共10个,

每个样本被抽到的机会均等,因此这些基本事件的出现是等可能的.

记事件:“选取的2人中至少有一名男生”,则事件包含的基本事件有: 共7个.

所以,即选取的2人中至少有一名男生的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间的频率之比为

)求这些产品质量指标值落在区间的频率;

用分层抽样的方法在区间抽取一个容量为6的样本,将该样本看成一个总体,从中任意

抽取2件产品,求这2件产品都在区间内的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为
(1)求函数f(x)的定义域;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象。交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;

(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?

(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的三个内角的对边长分别为的外接圆半径,则下列四个条件

(1); (2)

(3); (4).

有两个结论:甲:是等边三角形; 乙:是等腰直角三角形.

请你选出给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;

(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线平行于直线,求a的值;

(2)讨论函数的单调性;

(3) 若,且对时,恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程 在(0,2π)内有相异两解α,β,则α+β=

查看答案和解析>>

同步练习册答案