【题目】某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.
(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?
(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有一名男生的概率.
【答案】(I),;(II).
【解析】试题分析:(Ⅰ)由频率分布直方图可分别得到男生,女生优秀的频率,再乘以总人数,即可得到男、女生优秀人数;(Ⅱ)构建有序实数对,用枚举法列举所有可能的情形和满足题意的情形,再利用古典概型的计算公式求解即可.
试题解析:
解:(Ⅰ)由题可得,男生优秀人数为人,
女生优秀人数为人.
(Ⅱ)因为样本容量与总体中的个体数的比是,
所以样本中包含男生人数为人,女生人数为人.
设两名男生为, ,三名女生为, , .
则从5人中任意选取2人构成的所有基本事件为: , , , , , , , , , 共10个,
每个样本被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件:“选取的2人中至少有一名男生”,则事件包含的基本事件有: , , , , , , 共7个.
所以,即选取的2人中至少有一名男生的概率为.
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(Ⅰ)求这些产品质量指标值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意
抽取2件产品,求这2件产品都在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象。交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:
(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】的三个内角的对边长分别为,是的外接圆半径,则下列四个条件
(1); (2);
(3); (4).
有两个结论:甲:是等边三角形; 乙:是等腰直角三角形.
请你选出给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.
(1)求接到救援命令时救援船距渔船的距离;
(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com