精英家教网 > 高中数学 > 题目详情
1.已知f(x)=ax+b-1,若a,b都是从区间[0,2]任取的一个数,则f(1)<0成立的概率为$\frac{1}{8}$.

分析 本题利用几何概型求解即可.在a-o-b坐标系中,画出f(1)<0对应的区域,和a、b都是在区间[0,2]内表示的区域,计算它们的比值即得.

解答 解:f(1)=a+b-1<0,即a+b<1,
如图,A(1,0),B(0,1),
S△ABO=$\frac{1}{2}$,
∴P=$\frac{\frac{1}{2}}{2×2}$=$\frac{1}{8}$.
故答案为:$\frac{1}{8}$.

点评 本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=2sin(x+2)的最大值是(  )
A.-2B.2C.2sin2D.-2sin2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若方程|x-2|•(x+1)=k有三个不同的解,则常数k的取值范围为0<k<$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:当-$\frac{1}{2}$<x<0 时,f(x)>$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切,求光线l和反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xoy中,直角l的参数方程为$\left\{\begin{array}{l}{x=3+tsinα}\\{y=\sqrt{5}+tcosα}\end{array}\right.$,(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),当$\frac{π}{4}$≤α≤$\frac{π}{3}$时,求|PA|-|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.经过圆x2-4x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是(  )
A.x+y+2=0B.x+y-2=0C.x-y+2=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,若2Sn+3=3an(n∈N*),则数列{an}的通项公式an=3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若f(x)是奇函数,则g(3)的值是(  )
A.-$\frac{1}{8}$B.-8C.$\frac{1}{8}$D.8

查看答案和解析>>

同步练习册答案