精英家教网 > 高中数学 > 题目详情

【题目】如图长方体中,分别为棱的中点

(1)求证:平面平面

(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).

【答案】(1)见证明;(2) ;画图见解析

【解析】

(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面

(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.

(1)证明:在长方体中,

分别为棱的中点,所以平面,则

中,

中,

所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面

(2)

如图所示:设,连接,取中点记为,过,且,则.

证明:因为中点,所以;又因为,且,所以,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则平面,即点为直线与平面的交点;

因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以

因为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿间的距离为(
A. 海里
B. 海里
C. 海里
D.40海里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,内角对边的边长分别是,已知.()若的面积等于,求)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为真命题,而BC的逆否命题为真命题,且ABCD的充分条件,而DEBC的充要条件,则¬B是¬E____条件;AE____条件.(填充分”“必要充要既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求的最小值;

(2)设函数恰有两个零点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7, 12.7, 14.4, 13.8, 13.3 ,12.5 ,13.5 ,13.6 ,13.1 ,13.4,

并分组如下:

(1)完成上面的频率分布表;

(2)根据上表,在坐标系中画出频率分布直方图.

查看答案和解析>>

同步练习册答案