精英家教网 > 高中数学 > 题目详情

【题目】某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别做记录,抽查数据如下:
甲车间:102,101,99,98,103,98,99;
乙车间:110,115,90,85,75,115,110.
(1)问:这种抽样是何种抽样方法;
(2)估计甲、乙两车间包装产品的质量的均值与方差,并说明哪个均值的代表性好,哪个车间包装产品的质量较稳定.

【答案】
(1)

解:由于是每隔1小时抽取一包产品,是等间隔抽取,属于系统抽样


(2)

解:甲的平均数为:(102+101+99+98+103+98+99)=100

乙的平均数为:(110+115+90+85+75+115+110)=100

∴两人的均值相同,

甲的方差为: [(102﹣100)2+(101﹣100)2+(99﹣100)2+(103﹣100)2+(98﹣100)2+(99﹣100)2+(98﹣100)2]=.

乙的方差为: [(110﹣100)2+(115﹣100)2+(90﹣100)2+(85﹣100)2+(75﹣100)2+(115﹣100)2+(110﹣100)2]=.

∴s2<s2

∴甲车间包装的产品质量较稳定


【解析】(1)每隔1小时抽取一包产品,等间隔抽取,属于系统抽样.(2)做出两组数据的平均数和方差,把两组数据的方差和平均数进行比较,看出平均数相等,而甲的方差小于乙的方差,得到甲车间比较稳定.
【考点精析】利用系统抽样方法对题目进行判断即可得到答案,需要熟知把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本;第一个样本采用简单随机抽样的办法抽取.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点与椭圆 的一个焦点重合,点在抛物线上,过焦点的直线交抛物线于两点.

(Ⅰ)求抛物线的方程以及的值;

(Ⅱ)记抛物线的准线轴交于点,试问是否存在常数,使得都成立?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.
(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;
(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面垂直,且.

1)求证:平面平面

2)在线段上是否存在了点,使得平面?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,试求y=[f(x)]2+f(x2)的值域

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;

(Ⅱ)若函数在其定义域上是增函数,求实数的取值范围;

(Ⅲ)当时,函数的两个极值点为,且,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且sinA+cosA=2.

(Ⅰ)求角A的大小;

(Ⅱ)现给出三个条件:①a=2;②B=45°;③c= .试从中选出两个可以确△ABC的条件,写出你的选择,并以此为依据求△ABC的面积.(只写出一个方案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC是边长为1的正三角形,点P1 , P2 , P3四等分线段BC(如图所示).

(1)求 + 的值;
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.

查看答案和解析>>

同步练习册答案