精英家教网 > 高中数学 > 题目详情
11.在四面体ABCD中,若AC=AD,∠BAC=∠BAD,则异面直线AB与CD所成角的大小为90°.

分析 由已知推导出△ABC≌△ABD,从而BC=BD,取DC中点O,推导出CD⊥平面AOB,由此能求出异面直线AB与CD所成角的大小.

解答 解:在四面体ABCD中,
∵AC=AD,∠BAC=∠BAD,AB=AB,
∴△ABC≌△ABD,∴BC=BD,
取DC中点O,连结AO、BO,则AO⊥CD,BO⊥CD,
又AO∩BO=O,∴CD⊥平面AOB,
又AB?平面AOB,∴AB⊥CD,
∴异面直线AB与CD所成角的大小为90°.
故答案为:90°.

点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设点P在双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$上.若F1、F2为双曲线的两个焦点,且PF1:PF2=1:3,则△F1PF2的周长为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知PA⊥面ABCD,PA=AB=3,面ABCD为正方形.试建立适当的平面直角坐标系,分别求下列平面的法向量.
(1)面ABCD;
(2)面PAB;
(3)面PBC;
(4)面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知奇函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b∈N*,c∈R),f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)判断f(x)在(1,+∞)上的单调性,并用单调性定义加以证明;
(3)试求函数g(x)=$\frac{{x}^{2}-4x-4}{x+1}$(0≤x≤1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三个互不相等的整数x、y、z之和在区间(40,44)内,若x、y、z依次构成公差为d的等差数列,x+y,y+z,z+x依次构成公比为q的等比数列,则d•q的值为42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)设A={1,2,3},对于A的每个非空子集X,用S(x)表示X中各元素的积,求所有S(x)的积;
(2)给定n,令A(n)={a[a为质数,且a整除n},用列举法表示A(30).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式|x-1|+2|x+2|≤a在[-4,4]上有解,则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知矩阵M=$[\begin{array}{l}{1}&{b}\\{c}&{2}\end{array}]$有特征值λ1=4及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{2}\\{3}\end{array}]$.求矩阵M及另一个特征值λ2和特征向量$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

同步练习册答案