【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
【答案】(1) (2)
【解析】试题分析:设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.
试题解析:(1)设,因为直线的斜率为,
所以, .
又
解得,
所以椭圆的方程为.
(2)解:设
由题意可设直线的方程为: ,
联立消去得,
当,所以,即或时
.
所以
点到直线的距离
所以,
设,则,
,
当且仅当,即,
解得时取等号,
满足
所以的面积最大时直线的方程为: 或.
【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.
科目:高中数学 来源: 题型:
【题目】动点分别到两定点连线的斜率的乘积为,设的轨迹为曲线分别为曲线的左、右焦点,则下列命题中:
(1)曲线的焦点坐标为;
(2)若,则;
(3)当时,△的内切圆圆心在直线上;
(4)设,则的最小值为;
其中正确命题的序号是:______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】铜仁市某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
K2=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: ,直线与抛物线交于, 两点.点 为抛物线上一动点,直线, 分别与轴交于, .
(I)若的面积为,求点的坐标;
(II)当直线时,求线段的长;
(III)若与面积相等,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(1)求的解析式,对称轴及对称中心.
(2)该图象可以由的图象经过怎样的变化得到.
(3)当,求的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com