精英家教网 > 高中数学 > 题目详情
15.空间四点A,B,C,D满足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=4,|$\overrightarrow{DA}$|=7,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为19.

分析 将向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$,$\overrightarrow{DA}$转化为以$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,$\overrightarrow{OD}$的式子,计算|$\overrightarrow{AB}$|2-|$\overrightarrow{BC}$|2+|$\overrightarrow{CD}$|2-|$\overrightarrow{DA}$|2,又$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{OC}$-$\overrightarrow{OA}$)•($\overrightarrow{OD}$-$\overrightarrow{OB}$),展开即可得到所求值.

解答 解:|$\overrightarrow{AB}$|2-|$\overrightarrow{BC}$|2+|$\overrightarrow{CD}$|2-|$\overrightarrow{DA}$|2=($\overrightarrow{AB}$)2-($\overrightarrow{BC}$)2+($\overrightarrow{CD}$)2-($\overrightarrow{DA}$)2
=($\overrightarrow{OB}$-$\overrightarrow{OA}$)2-($\overrightarrow{OB}$-$\overrightarrow{OC}$)2+($\overrightarrow{OD}$-$\overrightarrow{OC}$)2-($\overrightarrow{OA}$-$\overrightarrow{OD}$)2
=2($\overrightarrow{OC}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OD}$-$\overrightarrow{OA}$•$\overrightarrow{OB}$-$\overrightarrow{OC}$•$\overrightarrow{OD}$)
=4-9+16-49=-38,
即有$\overrightarrow{OC}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OD}$-$\overrightarrow{OA}$•$\overrightarrow{OB}$-$\overrightarrow{OC}$•$\overrightarrow{OD}$=-19,
又$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{OC}$-$\overrightarrow{OA}$)•($\overrightarrow{OD}$-$\overrightarrow{OB}$)
=$\overrightarrow{OC}$•$\overrightarrow{OD}$+$\overrightarrow{OA}$•$\overrightarrow{OB}$-$\overrightarrow{OC}$•$\overrightarrow{OB}$-$\overrightarrow{OA}$•$\overrightarrow{OD}$=19.
故答案为:19.

点评 本题考查向量的加减运算和数量积的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M={y|y=x+2},N={(x,y)|y=x2},则M∩N=(  )
A.B.{y|y≥0}C.{(2,4),(-1,1)}D.{y|y>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.f(x)=ex-$\frac{a}{2}$x2-x-1(其中a∈R,e为自然数的底数),g(x)=f′(x)为f(x)的导函数.
(1)求函数g(x)的单调区间;
(2)若函数g(x)在R上存在最小值,且最小值为0,求实数a的值;
(3)求证:当x≥0时,ex-x-1≥$\frac{1}{2}$xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,A=120°,则sinB+sinC的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简$\frac{\sqrt{1-2sin375°cos(-345°)}}{\sqrt{tan225°-co{s}^{2}}15°+cos165°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线y=-xsinθ+1的倾斜角的取值范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的最小正周期及最大值、最小值:
(1)y=$\frac{1}{2}$sin3x一1;(2)y=(sinx+cosx)2;(3)y=2sinx-5cosx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较loga3与loga10(a>0且a≠1)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2$\sqrt{17}$,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(Ⅰ)证明:GH∥EF;
(Ⅱ)若EB=2,求四棱锥D-GEFH的体积.

查看答案和解析>>

同步练习册答案