精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的偶函数f(x),其导函数为f'(x),对任意x∈[0,+∞),均满足:xf'(x)>﹣2f(x).若g(x)=x2f(x),则不等式g(2x)<g(1﹣x)的解集是(
A.(﹣∞,﹣1)
B.
C.
D.

【答案】C
【解析】解:由题意可得函数g(x)=x2f(x)为R上的偶函数,
∵xf'(x)>﹣2f(x),x2f′(x)+2xf(x)>0,
∴g′(x)=(x2f(x))′=2xf(x)+x2f′(x)>0,
∴g(x)=x2f(x)在[0,+∞)R上单调递增,
∵不等式g(2x)<g(1﹣x),
∴|2x|<|1﹣x|,
即(x+1)(3x﹣1)<0,
解得﹣1<x<
故选:C
【考点精析】掌握基本求导法则是解答本题的根本,需要知道若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 的图象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合 存在正实数 ,使得定义域内任意 都有
(1)若 ,试判断 是否为 中的元素,并说明理由;
(2)若 ,且 ,求 的取值范围;
(3)若 ),且 ,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且 ,则Sn取最小值时,n的值是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=,定义ST=0;若T={t1 , t2 , …,tk},定义ST= + +…+ .例如:T={1,3,66}时,ST=a1+a3+a66 . 现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T{1,2,…,k},求证:ST<ak+1
(3)设CU,DU,SC≥SD , 求证:SC+SCD≥2SD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数b的取值范围是(
A.(﹣∞,
B.(﹣∞,
C.(﹣
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2﹣x+b),若函数f(x)在区间[﹣2,2]上的零点个数为5,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数a,b满足:a+b=2.
(1)求 的最小值m;
(2)设函数f(x)=|x﹣t|+|x+ |(t≠0),对于(Ⅰ)中求得的m,是否存在实数x,使得f(x)=m成立,若存在,求出x的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案