精英家教网 > 高中数学 > 题目详情
10.已知正四面体ABCD的棱长为1,求:
(1)该四面体的内切球的表面积;
(2)与该四面体各条棱均相切的球的体积;
(3)该四面体的外接球上AB两点间的球面距离.

分析 (1)作出正四面体的图形,确定球的球心位置为O,说明OE是内切球的半径,运用勾股定理计算,即可得到球的体积.
(2)将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线,根据球O与正四面体的各棱都相切,且球心在正四面体的内部,可得球O是正方体的内切球,从而可求球O的表面积.
(3)由题意求出外接球的半径,然后求出∠AOB的大小,即可求解其外接球球面上A、B两点间的球面距离.

解答 解:(1)如图O为正四面体ABCD的内切球的球心,正四面体的棱长为1,
所以OE为内切球的半径,设OA=OB=R,
在等边三角形BCD中,BE=$\frac{\sqrt{3}}{3}$,
AE=$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$.
由OB2=OE2+BE2,即有R2=($\frac{\sqrt{6}}{3}$-R)2+$\frac{1}{3}$
解得,R=$\frac{\sqrt{6}}{4}$.OE=AE-R=$\frac{\sqrt{6}}{12}$,
则其内切球的半径是$\frac{\sqrt{6}}{12}$,
所以四面体的内切球的表面积为$4π•\frac{6}{144}$=$\frac{π}{6}$;
(2)将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线
∵正四面体ABCD的棱长为1
∴正方体的棱长为$\frac{\sqrt{2}}{2}$,
∵球O与正四面体的各棱都相切,且球心在正四面体的内部,
∴球O是正方体的内切球,其直径为$\frac{\sqrt{2}}{2}$,
∴球O的体积为$\frac{4}{3}π•(\frac{\sqrt{2}}{4})^{3}$=$\frac{\sqrt{2}}{24}$π;
(3)由(1),正四面体的外接球的半径为:$\frac{\sqrt{6}}{4}$.
设球心为O.
∴cos∠AOB=$\frac{(\frac{\sqrt{6}}{4})^{2}+(\frac{\sqrt{6}}{4})^{2}-{1}^{2}}{2×\frac{\sqrt{6}}{4}×\frac{\sqrt{6}}{4}}$=-$\frac{1}{3}$,
∴∠AOB=π-arccos$\frac{1}{3}$,
∴外接球球面上A、B两点间的球面距离为:$\frac{\sqrt{6}}{4}$(π-arccos$\frac{1}{3}$).

点评 本题考查正四面体的内切球半径的求法,考查正四面体的外接球的球面距离的求法,解题的关键是将正四面体ABCD,补成正方体,使得球O是正方体的内切球.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=ax2+2x-$\frac{4}{3}$lnx在x=1处取得极值.则函数f(x)的极大值为$\frac{8}{3}$-$\frac{4}{3}$ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.方程$\left\{\begin{array}{l}x=t\\ y={t^2}+1\end{array}\right.({t为参数})$表示的曲线是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如果我们现在手里有6本书,按下列要求各有多少种不同的排法:
(1)6本书有1---6的编号,排成一排,1号和2号必须相邻;
(2)6本书有1---6的编号,排成一排,1号和2号不能相邻;
(3)6本书厚度各不相同,取出3本排成一排,从左到右厚度依次降低.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知四边形ABCD为平行四边形,A(-1,2),B(0,0),C(1,7),则点D的坐标是(  )
A.(-9,9)B.(-9,0)C.(0,9)D.(0,-9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}满足a1=1,an+1=2an+1
(1)求{an}的通项公式;
(2)记bn=log2(an+1),求数列{bn•an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列不等式中成立的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a<b<0,则a2<ab<b2D.若a<b<0,则$\frac{1}{a}$>$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线x2=8y上的一点M到x轴的距离为4,则点M到抛物线焦点的距离是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有人要走上一个楼梯,每步可向上走一级台阶或二级台阶,我们用an表示该人走到n级台阶时所有可能不同走法的种数,试寻求an的递推关系.

查看答案和解析>>

同步练习册答案