精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-4x+4(a∈R)在x=2取得极值.
(Ⅰ)确定a的值并求函数的单调区间;
(Ⅱ)若关于x的方程f(x)=b至多有两个零点,求实数b的取值范围.
分析:(Ⅰ)先求导函数,根据函数f(x)在x=2时有极值,可得f′(2)=0,从而可求出a的值,由导数的正负可确定函数的单调区间;
(Ⅱ)由(Ⅰ)知,极大值为f(-2)=
28
3
,极小值为f(2)=-
4
3
,要使关于x的方程f(x)=b至多有两个零点,则b在两极值之外即可.
解答:解:(Ⅰ)因为f(x)=ax3-4x+4(a∈R),所以f′(x)=3ax2-4
因为函数f(x)在x=2时有极值,所以f′(2)=0,即3×4a-4=0
得  a=
1
3
,经检验符合题意,所以f(x)=
1
3
x3-4x+4
所以f′(x)=x2-4=(x+2)(x-2)
令,f′(x)=0得,x=2,或x=-2,当x变化时f′(x),f(x)变化如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f′(x) + 0 - 0 +
f(x) 单调递增↗ 极大值 单调递减↘ 极小值 单调递增↗
所以f(x)的单调增区间为(-∞,-2),(2,+∞);f(x)的单调减区间为(-2,2).
(Ⅱ)由(Ⅰ)知,当x=-2时,f(x)有极大值,并且极大值为f(-2)=
28
3

当x=2时,f(x)有极小值,并且极小值为f(2)=-
4
3

要使关于x的方程f(x)=b至多有两个零点,则b的取值范围为(-∞,-
4
3
]∪[
28
3
,+∞)
点评:本题以函数的极值为载体,考查函数解析式的求解,考查利用导数求函数的单调区间,考查函数的极值的求解,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案