精英家教网 > 高中数学 > 题目详情
设点F1、F2为双曲线C:的左、右焦点,P为C上一点,若△PF1F2的面积为6,则=                
9

试题分析:由方程可知

点评:平面几何中涉及到向量运算的一般都要转化为点的坐标进行化简
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知F1F2分别是双曲线的左、右焦点,P是双曲线左支的一点, ,则该双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F是抛物线的焦点, A、B是抛物线上两点,若是正三角形,则 的边长为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆相交于两点,且坐标原点到直线的距离为的大小是否为定值?若是求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2Px,过点A(2,4),F为焦点,定点B的坐标为(8,-8),则|AF|∶|BF|值为
A.1∶4B.1∶2C.2∶5D.3∶8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C中心在原点,焦点在轴上,一条经过点且倾斜角余弦值为的直线交椭圆于A,B两点,交轴于M点,又.
(1)求直线的方程;
(2)求椭圆C长轴的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C  2x2y2=2与点P(1,2)

(1)求过P(1,2)点的直线l的斜率取值范围,使lC分别有一个交点,两个交点,没有交点 
(2)若Q(1,1),试判断以Q为中点的弦是否存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与双曲线的一条渐近线平行,则这两条平行直线之间的距离是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆y2=1的一个焦点的直线与椭圆交于两点,则与椭圆的另一焦点构成的△的周长为               .

查看答案和解析>>

同步练习册答案