精英家教网 > 高中数学 > 题目详情
4.已知数列{an}满足a1=3,an+1=2an-n+1,数列{bn}满足b1=2,bn+1=bn+an-n.
(1)证明:{an-n}为等比数列;
(2)数列{cn}满足${c_n}=\frac{{{a_n}-n}}{{({b_n}+1)({b_{n+1}}+1)}}$,求数列{cn}的前n项和Tn

分析 (1)由an+1=2an-n+1,变形为an+1-(n+1)=2(an-n),即可证明.
(2)由${a_n}-n=({a_1}-1)•{2^{n-1}}={2^n}$,可得${b_{n+1}}={b_n}-n+{a_n},且{a_n}-n={2^n}$,${b_{n+1}}-{b_n}={2^n}$,利用累加求和方法可得bn,再利用“裂项求和”方法即可得出.

解答 (1)证明:∵an+1=2an-n+1,∴an+1-(n+1)=2(an-n),
又因为a1-1=2,所以{an-n}是以2为首项,2为公比的等比数列.
(2)解:∵${a_n}-n=({a_1}-1)•{2^{n-1}}={2^n}$,
∵${b_{n+1}}={b_n}-n+{a_n},且{a_n}-n={2^n}$,
∴${b_{n+1}}-{b_n}={2^n}$,
$\left\{\begin{array}{l}{b_2}-{b_1}={2^1}\\{b_3}-{b_2}={2^2}\\…\\{b_n}-{b_{n-1}}={2^{n-1}}\end{array}\right.$
累加求和得到${b_n}=2+\frac{{2•(1-{2^{n-1}})}}{1-2}={2^n}(n≥2)$,
当n=1时,b1=2,∴${b_n}={2^n}$.
∴${c_n}=\frac{{{a_n}-n}}{{({b_n}+1)({b_{n+1}}+1)}}=\frac{2^n}{{({2^n}+1)({2^{n+1}}+1)}}=\frac{1}{{{2^n}+1}}-\frac{1}{{{2^{n+1}}+1}}$,
∴Tn=$(\frac{1}{2+1}-\frac{1}{{2}^{2}+1})$+$(\frac{1}{{2}^{2}+1}-\frac{1}{{2}^{3}+1})$+…+$(\frac{1}{{2}^{n}+1}-\frac{1}{{2}^{n+1}+1})$
=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“累加求和”与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-3x-10≤0},B={x|4<x<6},C={x|x<a}.
(1)求∁U(A∩B);
(2)若A∪B⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?x∈R,x2+x+1<0,下列说法错误的是(  )
A.若¬p:?x∈R,x2+x+1≥0B.p为假命题
C.p∨¬p为假命题D.¬p为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知|2x-3|≤1的解集为[m,n],则m+n的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1≤x<3},B={x|x2≥4},则A∩(∁RB)=(  )
A.{x|1≤x<2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={x|x>0},B={x|x<1},则A∩B={x|0<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在同一平面内,点P位于两平行直线l1、l2两侧,且P到l1,l2的距离分别为1,3,点M,N分别在l1,l2上,|$\overrightarrow{PM}$+$\overrightarrow{PN}$|=8,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的最大值为(  )
A.15B.12C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知对数函数f(x)=(m2-m-1)logm+1x,且g(x)是f(x)的反函数.
(1)求f(x)和g(x)的表达式;并指出它们的定义域和值域;
(2)求f(x)在区间$[{\frac{1}{9},27}]$上的最大值和最小值;
(3)在同一平面直角坐标系中作出f(x)和g(x)的图象;并指出它们的图象关于哪一条直线对称?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i是虚数单位,复数$\frac{i-2}{1+ai}$为纯虚数,则实数a为(  )
A.0B.1C.2D.4

查看答案和解析>>

同步练习册答案