(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线与轴围成一个等腰三角形.
(1) (2)(3)见解析
【解析】
试题分析:(1)由已知椭圆焦点在轴上可设椭圆的方程为,()
因为,所以, ①
又因为过点,所以, ②
联立①②解得,故椭圆方程为. ……4分
(2)将代入并整理得,
因为直线与椭圆有两个交点,
所以,解得. ……8分
(3)设直线的斜率分别为和,只要证明即可.
设,,
则.
所以
所以,所以直线与轴围成一个等腰三角形. ……12分
考点:本小题主要考查椭圆标准方程的求法,椭圆中基本量的计算和直线与椭圆的位置关系,考查学生综合运用知识解决问题的能力、推理论证能力和运算能力.
点评:纵观历年高考,椭圆是一个高频考点,题型有选择题和填空题,难度不大,但解答题是压轴题,难度较大,所以在学习中,同学们一方面要掌握好椭圆的标准方程和几何性质等基础知识,另外还要多归纳这些知识的使用方法和应用技巧,做到心中有数,从容应对.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com