精英家教网 > 高中数学 > 题目详情
已知复数z1满足(1-i)z1=1+3i,z2=a-i(a∈R),其中i为虚数单位.
(1)求z1
(2)若z1是关于x的实系数方程x2-px+q=0的一个根,求实数p、q的值.
(3)若 z1-
.
z2
 | > 
2
  |z1|
,求实数a的取值范围.
分析:(1)化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为a+bi的形式即可得到z1
(2)若z1是关于x的实系数方程x2-px+q=0的一个根,求出另一个根,利用韦达定理即可求实数p、q的值.
(3)求出|z1-
.
z2
|
的模,利用 z1-
.
z2
 | > 
2
  |z1|
,得到a的关系式,即可求实数a的取值范围.
解答:解:(1)因为复数z1满足(1-i)z1=1+3i,
所以z1=
1+3i
1-i
=
(1+3i)(1+i)
(1-i)(1+i)
=-1+2i
…(3分)
(2))z1是关于x的实系数方程x2-px+q=0的一个根,实系数方程虚根成对,
由韦达定理可知p=-1+2i+(-1-2i)=-2,q=(-1+2i)(-1-2i)=1+4=5,
所以p=-2,q=5…(6分)
(3)z1-
.
z2
 =(-1+2i) -(a+i) =-1-a+i
…(8分)
z1-
.
z2
 | > 
2
  |z1|
,∴(-1-a)2+1>10…(10分)
∴a<-4,或a>2故实数a的取值范围是(-∞,-4)∪(2,+∞).…(12分)
点评:本题是中档题,考查复数的基本运算,复数模的求法,复数方程的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,其中i为虚数单位,a∈R,若|z1-
.
z2
|
<|z1|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,(a∈R),若|z1-
.
z2
| < |z1|
,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)已知复数z1满足(1+i)z1=3+i,复数z0满足z0z1+
.
z0
=4

(1)求复数z0
(2)设z0是关于x的实系数方程x2-px+q=0的一个根,求p、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县二模)已知复数z1满足(1+i)z1=1+3i,z2=1-ai(a∈R)且|z1-z2|<|z1|
(1)求复数z1
(2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案