【题目】某高校在2019年的冬令营考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示:
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | 35 | 0.350 | |
第3组 | 10 | 0.100 | |
第4组 | 20 | 0.200 | |
第5组 | 30 | 0.300 | |
合计 | 100 | 1.00 |
(1)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(2)在(1)的前提下,高校决定在这6名学生中,随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被A考官测试的概率.
【答案】(1)第3、4、5组每组各抽取1名,2名,3名学生进入第二轮面试. (2)
【解析】
(1)先求出3、4、5组一共有多少学生,然后利用抽样比进行求解即可;
(2)第三、四、五组的六名同学为B,C,D,E,F,G,在这6名学生中随机抽取2名,写出各种结果,然后再求出其中第4组至少有1名学生被抽中的结果,最后利用古典概型概率的计算公式直接求解即可.
(1)因为3、4、5组共有名学生.
利用分层抽样在这3组学生中抽取6名进入第二轮,每组抽取的人数为:
第3组:
第4组:
第5组:
所以第3、4、5组每组各抽取1名,2名,3名学生进入第二轮面试.
(2)设第三、四、五组的六名同学为B,C,D,E,F,G,在这6名学生中随机抽取2名,共BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,FG等15种结果;
其中第4组至少有1名学生被抽中有BC,BD,CD,CE,CF,CG,DE,DF,DG9种结果,
故所求概率.
科目:高中数学 来源: 题型:
【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
莴笋 | 5吨 | 1万元 | 0.5万元 |
西红柿 | 4.5吨 | 0.5万元 | 0.4万元 |
那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个平面垂直,下列命题
①一个平面内已知直线必垂直于另一个平面内的任意一条直线
②一个平面内的已知直线必垂直于另一个平面的无数条直线
③一个平面内的任一条直线必垂直于另一个平面
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面
其中不正确命题的个数是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,
(Ⅰ)求该椭圆的标准方程:
(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点是椭圆上任意一点,的最小值为,且该椭圆的离心率为.
(1)求椭圆的方程;
(2)若是椭圆上不同的两点,且,若,试问直线是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若,,求函数的极值;
(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对的取值范围进行讨论)
(3)在(2)的条件下,设,函数,若存在使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com